128 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 1,

JANUARY 2017

Leaky Buffer: A Novel Abstraction for Relieving
Memory Pressure from Cluster Data
Processing Frameworks

Zhaolei Liu and T. S. Eugene Ng

Abstract—The shift to the in-memory data processing paradigm has had a major influence on the development of cluster data
processing frameworks. Numerous frameworks from the industry, open source community and academia are adopting the in-memory
paradigm to achieve functionalities and performance breakthroughs. However, despite the advantages of these in-memory frameworks,
in practice they are susceptible to memory-pressure related performance collapse and failures. The contributions of this paper are two-
fold. First, we conduct a detailed diagnosis of the memory pressure problem and identify three preconditions for the performance
collapse. These preconditions not only explain the problem but also shed light on the possible solution strategies. Second, we propose
a novel programming abstraction called the leaky buffer that eliminates one of the preconditions, thereby addressing the underlying
problem. We have implemented a leaky buffer enabled hashtable in Spark, and we believe it is also able to substitute the hashtable that
performs similar hash aggregation operations in any other programs or data processing frameworks. Experiments on a range of
memory intensive aggregation operations show that the leaky buffer abstraction can drastically reduce the occurrence of memory-
related failures, improve performance by up to 507 percent and reduce memory usage by up to 87.5 percent.

Index Terms—C.2.4.b Distributed applications, C.2.4 distributed systems, C.2 communication/networking and information technology,
C computer systems organization, C.4.a design studies, C.4 performance of systems, C computer systems organization, D.1.0 general,
D.1 programming techniques, D software/software engineering, D.2.10.a design concepts, D.2.10 design, D.2 software engineering,

D software/software engineering, E.O general, E data

1 INTRODUCTION

HEN MapReduce [24] and Hadoop [2] were intro-

duced in 2004 and 2005, a high end multi-processor
Intel Xeon server would have 64 or 128 GB of RAM. Fast for-
ward to 2015, an Intel Xeon E7 v2 server can support 1.5 TB
of RAM per CPU socket; a high end server can have 6 TB
of RAM. This factor of 50 to 100 increase in memory
capacity over the past decade presents a tremendous
opportunity for in-memory data processing. It has been
widely acknowledged that in-memory computing enables
the running of advanced queries and complex transac-
tions at least one order of magnitude faster than doing so
using disks, leading to companies and enterprises shifting
towards in-memory enabled applications for speed and
scalability [12], [13].

This shift to the in-memory paradigm has had a major
influence on the development of cluster data processing
frameworks. On one hand, old instances of reliance on hard
disks (e.g., Hadoop’s shuffle operation stored incoming
data on disks, then re-read the data from disks during sort-
ing) that were motivated by a limited amount of RAM are
being re-visited [36]. On the other hand, in-memory

o The authors are with the Computer Science Department, Rice University,
Houston, TX. E-mail: Izlfred@gmail.com, eugeneng@rice.edu.

Manuscript received 1 Sept. 2015; revised 10 Mar. 2016; accepted 13 Mar.
2016. Date of publication 25 Mar. 2016, date of current version 14 Dec. 2016.

Recommended for acceptance by M. Steinder.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2016.2546909

processing is being exploited to offer new functionalities
and accelerated performance. More and more cluster data
processing frameworks and platforms from the industry,
open source community and academia [1], [4], [5], [8], [40],
[41] are adopting and shifting to the in-memory paradigm.
For example, Spark supports the traditional MapReduce
programming model and enables in-memory caching,
which enables much faster data processing and computa-
tion [4], [41]. It can achieve 100x performance improvement
when compared to Hadoop in some scenarios and can sup-
port interactive SQL-like query that leverages in-memory
data table caching.

However, despite the advantages of these in-memory
cluster data processing frameworks, in practice they are sus-
ceptible to memory-pressure related performance collapse
and failures. These problems are widely reported by user
communities and greatly limit the usability of these systems
in practice [16], [17], [18], [19]. Take Spark as an example,
our experimental results leave us initially quite perplexed
(details found in Section 5) — We define a task-input-data-
size to task-allocated-memory ratio, or data to memory ratio
(DMR) for short, as the total job input data size divided by
the number of parallel tasks divided by the amount of mem-
ory allocated to each task.! For a job with the groupByKey
operation, a DMR of 0.26, which would seem generous,

1. An alternative definition of DMR for reduce tasks might use the
total MapperOutputFile size instead of the total job input data size.
However, we do not adopt this definition because users typically do
not relate to the size of the MapperOutputFiles.

1045-9219 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LIU AND NG: LEAKY BUFFER: A NOVEL ABSTRACTION FOR RELIEVING MEMORY PRESSURE FROM CLUSTER DATA... 129

already causes a collapse of the reduce stage performance
by up to 631 percent; the best performance may require a
DMR as small as 0.017 as Fig. 10 in Section 5.3 shows; in
another job with the join operation, a moderately aggres-
sive DMR of 0.5 is enough to cause the reduce stage to fail,
as Fig. 13 in Section 5.4 shows.

Our work is motivated by these observations and
addresses two questions: First, what are the underlying rea-
sons for the very high sensitivity of performance to DMR?
The severity of the performance collapse leads us to suspect
that there may be other factors beyond memory manage-
ment overheads involved. Second, what system design and
implementation techniques are there to improve perfor-
mance predictability, memory utilization, and system
robustness, striking the right balance between relieving
memory-pressure and performance? A simple offloading of
data from memory to disk will not meet our objectives.

A commonality among the aforementioned in-memory
data processing frameworks is that they are implemented
using programming languages (e.g., Java, Scala) that support
automatic memory management.2 However, the memory
management overhead associated with garbage collection
alone is not enough to explain the severity of the performance
collapse. In fact, it is the combination of such overhead and
the distributed inter-dependent nature of the processing that
is responsible. The data processing task generates high num-
ber of objects extremely frequently, while most of those
objects persist in memory for nearly the entire lifetime of the
task, resulting in frequent garbage collections. Moreover, the
mutual-dependence of those concurrent tasks exacerbates the
negative impact of garbage collections because a task-to-task
exchange stalls if just one of the two tasks is stalled.

It is not hard to see why common join and groupBy-
Key aggregation jobs meet the above conditions and are
therefore susceptible to performance collapse and failure —
In such jobs, the reducers perform a data shuffle over the
network, and the incoming data are processed into a hash
table containing a very large number of key-value objects
that persist until the end of the job.

The solution we propose is a novel abstraction called
leaky buffer. It dramatically reduces the number of in-
memory objects while ensuring a high degree of overlap
between network I/O and CPU-intensive data processing.
Specifically, the leaky buffer models incoming data as hav-
ing a combination of control information and data contents.
Furthermore, the control information is the subset of data
that the task needs to process the data contents. For exam-
ple, a task that sorts key-value pairs according to the keys
requires the keys as the control information. Upon receiving
incoming data, the leaky buffer holds the data contents in
an in-memory buffer, but leaks control information in a pro-
grammable manner to the data processing task. In this way,
the task can still perform computation on the control infor-
mation (e.g., construct the logical data structures for
organizing the incoming data) that is necessary for data

2. While the pros and cons of automatic memory management are
debatable, arguably the pros in terms of eliminating memory allocation
and deallocation related bugs outweigh the cons because otherwise
many of these frameworks and the whole industry surrounding them
might not even exist today!

processing. We have implemented a leaky buffer enabled
hashtable in Spark, and we believe it is also able to substi-
tute the hashtable that performs similar hash aggregation
operations in any other programs or data processing frame-
works such as Apache Pig [3] and Apache Tez [6]. We
experimentally demonstrate that the leaky buffer abstrac-
tion can improve performance predictability, memory utili-
zation, and system robustness. Compared to the original
Spark using the same DMR, the reduce stage run time is
improved by up to 507 percent; execution failures that
would occur under original Spark are avoided; and memory
usage is reduced by up to 87.5 percent while achieving even
better performance.

2 PROBLEM DIAGNOSIS

This section presents a diagnosis of the memory pressure
problem and the subsequent performance collapse. We
explicitly focus on the case where a system is implemented
using programming languages (e.g., Java, Scala) that sup-
port automatic memory management with tracing garbage
collection. Among different garbage collection types, tracing
is the most common type, so much so that “garbage
collection” often refers to tracing garbage collection [21].
Tracing garbage collection works by tracing the reachable
objects by following the chains of references from certain
special root objects, then all unreachable objects are col-
lected as garbage. The tracing cost is thus positively corre-
lated with the number of objects in the heap.

2.1 Preconditions for Performance Collapse
The first precondition is that:

The data processing task produces a large number of per-
sistent objects. By persistent, we mean the objects stay
alive in memory for nearly the entire lifetime of the task.
This condition leads to costly garbage collections.

When there is a large number of persistent objects in the
heap, tracing has to visit a large number of objects and thus
garbage collection cost will soar. Furthermore, as the heap
gets filled with persistent objects and the memory pressure
builds, each garbage collection operation may free very little
memory.

The second precondition is that:

The data processing task causes a high rate of object crea-
tion. This condition is necessary for frequent garbage
collections.

The emphasis here is that when the first precondition
holds, the second precondition has a significant negative
effect. Garbage collectors are highly optimized for handling
high rate of creation and deletion of short-lived objects. The
parallel garbage collector in the Java virtual machine (JVM)
uses generational garbage collection strategy [7]. The short-
lived objects live in the young generation in the heap and
get collected efficiently when they die.

However, when a large number of persistent objects
occupy a large portion of the heap, creating new objects will
often require garbage collection to reclaim space, while
more frequent object creation will trigger more frequent
garbage collection events as well. In this situation, garbage
collection is slow and inefficient because it has to trace

130 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 1,

Eden space utilization

! A
0 50 100 150 200 250 300 350 400 450 500
time(s)

Old space utilization

n L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
time(s)

Fig. 1. Heap utilization of one node during an in-memory hash aggrega-
tion job. Short-lived objects reside in the so called eden space, while per-
sistent objects reside in the so called old space.

through a large number of persistent objects, and can only
recover very little space since most of those objects are alive.
The third precondition is that:

There are multiple concurrent data processing tasks and
they exchange large amount of data simultaneously with
memory intensive processing of this exchanged data. This
condition dramatically exacerbates the negative impact of
garbage collections because a task-to-task exchange stalls
if just one of the two tasks is stalled.

Precondition 3 helps to propagate the delays caused by
memory pressure problem on one node to other nodes.
When one node is suffering from inefficient, repeated gar-
bage collections, much of its CPU resources may be used
by the garbage collector, or even worse the garbage
collection forces stop-the-world pause to the whole pro-
cess. Consequently, network transfers can be delayed or
paused as well. In turn, tasks running on other nodes can
be delayed because they must wait on the network trans-
fers from this node.

Take the shuffle operation as an example: during the
reduce stage of the MapReduce programming model, the
shuffle operation refers to the reducers fetching mapper-
output-files over the network from many other mappers. If
some of the mapper nodes are busy with garbage collection,
the network throughput of the shuffle traffic will degrade
and the reducers’ computations will be delayed. Because a
network transfer can be disrupted if just one of the two
ends is disrupted, similarly, if some of the reducer nodes
are busy with garbage collection, the shuffle traffic to those
nodes will also slow down.

2.2 A Concrete Example: Spark Hash Aggregation
This section illustrates the memory pressure problem more
quantitatively by a Spark job with groupByKey operation
that satisfies the preconditions for performance collapse.
groupByKey is a typical hash aggregation operation. It pro-
cesses the key-value pairs by aggregating the values that
have the same key together. This job runs on a cluster of the
same setting as in Section 5.1. It uses a workload as described
in Section 5.8, with 2 x 10° key-value pairs for a total input
size of 13.6 GB. Spark chooses a default number of tasks
based on the input size so that this job has 206 map tasks and
the same number of reduce tasks, which gives a DMR of 0.04.
Fig. 1 illustrates the utilization statistics of the JVM heap.
The map stage of the job ends after approximately 300 sec-
onds followed by the reduce stage. During the map stage,
most garbage collection happens in the eden space, a region

JANUARY 2017
o | L2
> | 2]
£o S
z
gco ©
= L@
E_O (=]
]
R L=
S o <}
=
Ea o
© o [o
o | Le
o o

1000 2000 3000 4000 5000
finish time(ms)

Fig. 2. CDF of shuffle flows’ finish times of an in-memory hash aggrega-

tion job.

0 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180

time(s)

100 T T T

@
o
T

(2]
o
T

B
o
T

CPU utilization

n
o
T
1

Fig. 3. CPU utilization of one node during the reduce stage of an
in-memory hash aggregation job.

for short-lived objects, as can be seen by the frequent drops
in eden space utilization. At the same time, an increasing
amount of objects (both live and dead) accumulates in the
old space, where persistent objects reside.

During the reduce stage, the task executor builds a large in-
memory hash table to store incoming key-value pairs, so that
a large amount of objects are created rapidly and are pushed
from the eden space to the old space (observe the multiple
rounds of increases in old space utilization), satisfying pre-
conditions 1 and 2. Each sudden flattening out and drop of
utilization in the old space indicates one or more full garbage
collection events that last several seconds. Overall, 116 sec-
onds out of 515 seconds were spent in garbage collection, and
most of these 116 seconds were spent during the reduce stage.

The shuffle operation inherent in this job satisfies precondi-
tion 3. Full garbage collection brings a stop-the-world pause
to the whole node and network transfers. Fig. 2 shows the
cumulative distribution of the shuffle flows” finish times. At
each moment there could be 1 to 16 concurrent shuffle flows
incoming to or outgoing from one node. The average size of
those shuffle flows is 5.93 MB with the standard deviation of
0.47 MB. With gigabit Ethernet, ideally the flows should com-
plete within 48-768 ms. However, the CDF shows that around
20 percent of the flows finish in more than 1,000 ms , while 2.6
percent of them finish in more than 5,000 ms. Fig. 3 further
shows the CPU utilization of one node during the reduce
stage. The low CPU utilization periods indicate that the CPU
is waiting for incoming shuffle flows.

2.3 Doesn’t “do not do X” Solve the Problem?

Do not use automatic memory management. Removing auto-
matic memory management from cluster data processing

LIU AND NG: LEAKY BUFFER: A NOVEL ABSTRACTION FOR RELIEVING MEMORY PRESSURE FROM CLUSTER DATA... 131

frameworks is not a viable option. Automatic memory man-
agement is favored by developers because it frees them
from the burden of manual memory management and fatal
memory operation bugs such as dangling pointers, double-
free errors, and memory leaks. Without automatic memory
management, arguably those highly valuable cluster data
processing frameworks such as [1], [2], [4], [5], [8], [40], [41]
and the whole industry surrounding them might not even
exist!®

Use a non-tracing garbage collector. Among the two funda-
mental types of garbage collection strategies, tracing and
reference counting, tracing is used in practice for multiple
reasons. Reference counting incurs a significant space over-
head since it needs to associate a counter to every object. It
also incurs a high performance overhead since it requires
the atomic increment/decrement of the counter each time an
object is referenced /dereferenced. Another source of perfor-
mance overhead is that reference cycles must be detected by
the system or else dead objects cannot be freed correctly. In
sum, reference counting brings a new set of problems that
together have potentially even more negative effects on sys-
tem performance than tracing. A far more practical
approach is to seek a solution within the tracing garbage
collection framework.

Tuning the garbage collector. To investigate whether tuning
the garbage collector can relieve memory pressure, we have
performed extensive tuning and testing on the original
Spark in the ip-countrycode scenario described in
Section 5.2. We have done this for two latest Java garbage
collectors — the parallel garbage collector of Java 7 and the
G1 garbage collector of Java 8.* The result shows that it is
extremely hard to obtain any performance improvement
through tuning (and in most cases performance degraded)
compared to simply using the Java 7 parallel garbage collec-
tor with its default settings.

With default settings, the G1 garbage collector produces
a 46 percent worse reduce stage runtime than the parallel
garbage collector. We have explored different settings for
two key parameters for the G1 garbage collector, namely
InitiatingHeapOccupancyPercent for controlling the
heap occupancy level at which the marking of garbage is
triggered, and ConcGCThreads for controlling the number
of concurrent garbage collection threads [14], [22]. We var-
ied InitiatingHeapOccupancyPercent from 25 to 65
in 10 percent increments. The best result is 39 percent worse
than that of the parallel collector. We varied Con-
cGCThreads from 2 to 16. The best result is 41 percent
worse than that of the parallel collector.

For the parallel garbage collector, we have explored
newRatio for controlling the old generation to young gen-
eration size ratio, and ParallelGCThreads for control-
ling the number of garbage collection threads. We varied
newRatio from 0.5 to 4. No setting was able to outperform

3. The reader may observe that Google is widely known to use
C/C++ for infrastructure software development. However, the impor-
tant point is, for each company like Google, there are many more com-
panies like Facebook, Amazon, LinkedIn that wuse Java for
infrastructure software.

4. We do not consider the serial garbage collector which is designed
for single core processor, nor the CMS garbage collector which is
replaced by the G1 garbage collector.

processing logic
;\z\g
v || P E
3

control infa:

logical structure
that describes data

control info

data content £2

infa; ee

heak control info;
wlse if da%a content
buMer data content;

leaky buffer

incoming data

worker node

Fig. 4. An illustration of the leaky buffer abstraction. Control information
is extracted from incoming data by a program (step 1) and leaked to the
processing logic (step 2) in order to allow logical data structures neces-
sary for describing the data to be constructed (step 3). Data contents,
however, are kept inside the leaky buffer until they are needed.

the default ratio of 2, and on average performance was 2
percent worse. We varied ParallelGCThreads from 2 to
16. No setting was able to outperform the default value of 4,
and with 2 threads, performance was 32 percent worse.

Do not let network transfer threads share the same heap
with task execution threads. The network transfer threads
can reside in a separate process in order to isolate the
effect of garbage collection on network transfer perfor-
mance, while the memory copy overhead can be mini-
mized. However, this isolation does not help when the
data producer process is stalled, thereby the network
transfer process must wait for the data anyway. More-
over, even without network data shuffle, the garbage col-
lection cost of the reduce stage is still far too high. Thus,
isolating network transfer threads does not solve the fun-
damental problem.

3 LEAKY BUFFER

In seeking a solution to the problem, we have focused on
addressing precondition 1, i.e., reducing the number of per-
sistent objects in memory. We have also focused on design-
ing a solution that is simple to grasp by developers and
general in the following important sense:

e It makes no assumption on the type of processing
that is performed on the data. As a result, the solu-
tion has to reside on the consumer side of the data,
and has to be customizable according to the process-
ing being performed.

e It makes no assumption on whether the data come
from another node over the network or from the
local storage.

e It is applicable whenever the task does not require
the processing of all incoming data at once, thereby
opening an opportunity for reducing the number of
persistent objects in memory.

Our solution is a programming abstraction called the

leaky buffer. Fig. 4 illustrates the leaky buffer abstraction.
There are three high level ideas behind it:

e Distinguishing control information from data contents.
The leaky buffer abstraction explicitly models

132 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 1,

incoming data as a mixture of control information
and data contents. Furthermore, the control informa-
tion is the subset of data that the task needs to pro-
cess the data contents. For example, a task that sorts
key-value pairs according to the keys requires the
keys as the control information, or alternatively we
could define the control information as both the keys
and the locations of the corresponding value,
depending on the implementation. To extract the
control information, a leaky buffer implementation
must define the control information and understand
the data format.

e Programmable control information extraction. Program-
mability is innate to the leaky buffer abstraction.
Depending on the complexity of the control informa-
tion, the program associated with a leaky buffer
either simply selects the corresponding control infor-
mation from the input stream, or partially processes
the stream to infer the control information. For
instance, in a Java application that processes key-
value pairs, the byte-stream of key-value pairs is
usually encoded in the conventional form of keyl-
valuel-key2-value2-key3-value3... and so forth. Look
one level deeper, the bytes of keys and values con-
form to the Java serializer format, so that Java objects
can be reconstructed from these raw bytes. The con-
trol information could be the key objects themselves.
In this case, the leaky buffer needs to invoke the
deserializer to extract the key objects as control
information.

e Leakage of control information. The leaky buffer leaks a
flexible amount of control information to the proc-
essing logic, while the data contents remain inside
the leaky buffer until they are needed. The process-
ing logic can still perform computation on the con-
trol information (e.g.,, construct the in-memory
logical data structures for organizing the incoming
data) that is necessary for data processing. Depend-
ing on the task, the data contents may need to be
accessed eventually. For example, in a sorting task,
the data contents need to be written to a sorted out-
put file. In those cases, the processing logic con-
structs data structures that have references back to
the buffered data, and fetches the data contents from
the leaky buffer only on demand.

A part of the benefits of the leaky buffer stems from the
principle of lazy evaluation, a well-known system design
strategy. Specifically, the leaky buffer lazily fetches and pro-
cesses the data content to avoid unnecessary early commit-
ment of resources. However, another part of its benefits
stems from its proactive processing of the control informa-
tion and construction of the in-memory data structure. This
design of the leaky buffer trades a reasonable amount of
CPU resources, used by the extra buffering and data proc-
essing logic, for much better memory utilization and gar-
bage collection efficiency.

4 LEAKY BUFFER ENABLED HASHTABLE

We implement leaky buffer on hashtable and replace the
original hashtable in Spark. The leaky buffer enabled

JANUARY 2017
3
| K | v | bytes of objects i
[k] svm obiects
AR'AA"A
iali i VIiviv
I z
serialized K-V pairs . I A
+ vlk]v]k]v]x] vivly
Viviv

deserializer

MapperOutputFile (s) hash table

worker

Fig. 5. Original Spark’s hashtable implementation. An ArrayBuffer is
the Scala counterpart of a Java ArrayList; “bytes of objects” denotes
the bytes of serialized JVM objects.

hashtable has 300 lines of code. This leaky buffer enabled
hashtable is able to improve the performance of hash aggre-
gation operations in Spark, and it is also able to substitute
the hashtable that performs similar hash aggregation opera-
tions in any other programs or data processing frameworks.
For example, Apache Pig [3] supports hash aggregation on
the map side, and its hashtable can be replaced by the leaky
buffer enabled hashtable. As another example, in Apache
Tez [6], the leaky buffer enabled hashtable can be directly
used as a processor on a vertex to perform the hash aggrega-
tion operation. Despite the general applicability of the leaky
buffer enabled hashtable, we mainly evaluate it with Spark
in Section 5.

4.1 Hash Aggregation in Original Spark
In the original Spark, the execution logic of hash aggrega-
tion is:

e In the map task, the output key-value pairs are writ-
ten to MapperOutputFiles in the serialized format as
keyl-valuel-key2-value2-key3-value3...

e At the beginning of the reduce task, the worker
fetches MapperOutputFiles from other worker nodes
and deserializes each key-value pair in each Mapper-
OutputFile as it arrives (step 1 in Fig. 5).

e The worker matches the key object in the hash table
and appends the value object to the ArrayBuffer cor-
responding to that key (step 2 and 3 in Fig. 5).

e The above step is repeated until all key-value pairs
have been processed.

e At the end of the reduce task, the iterator iterates the
hash table and pass thee results to the next stage of
the job.

During the reduce stage, the Spark executor maintains a
list of value objects for each key in the hash table. These
objects persist through the reduce stage, as illustrated by
the numerous JVM objects in Fig. 5.

4.2 Leaky Buffer Enabled Hashtable Implementation
Following the abstraction in Fig. 4 of Section 3, we imple-
mented the leaky buffer on hashtable as Fig. 6 shows. When
the leaky buffer processes the incoming data stream of key-
value pairs, it extracts the key objects as part of the control
information, and buffers the bytes of value objects as the
data content. The leaky buffer leaks both the key objects and
the indexes of the values in the buffer as full control informa-
tion to the data processing logic to construct the hashtable.
Specifically, upon receiving the MapperOutputFiles in a
reduce task, the leaky buffer invokes the deserializer to
recover key objects from the raw bytes to JVM objects. In

LIU AND NG: LEAKY BUFFER: A NOVEL ABSTRACTION FOR RELIEVING MEMORY PRESSURE FROM CLUSTER DATA... 133

Kl\-' bytes of objects 4
VM objects — "
serialized K-V | |__I_ S ‘
pairs with % Jlviviv vivlv] M_'_'
format change byteArray IntArray ||
H // intAray || §
- [V«) [Cont
| leaky buffer N
3 hash table
MapperOutputFile (s) worker

Fig. 6. Leaky buffer enabled hashtable. The figure is simplified in that it
does not show the way to handle hash collision, which is the same as in
the original Spark hashtable implementation. “i” in the hashtable denotes
the index of the bytes of value in the byteArray (leaky buffer).

order to buffer the value objects as data contents, the leaky
buffer needs to know the byte lengths of those serialized
value objects in the incoming data stream to be able to copy
the bytes to the leaky buffer. An efficient implementation is
to make a format change to the list of key-value pairs in a
MapperOutputFile in order to indicate the byte lengths of
value objects without deserializing them. To do this, we
insert an int field in the middle of each key-value pair.
This int indicates the byte length of the following value
object. The format thus becomes keyl-lengthl-valuel-key2-
length2-value2-key3-length3-value3...

During the map task, a file writer writes the resulting
key-value pairs to a MapperOutputFile. To implement the
above format, when the writer finishes writing the bytes of
the key, it moves 4 bytes forward to the file stream and then
writes the bytes of the value, while saving the byte length of
the value. After writing the bytes of the value, the writer
inserts the length into the 4 reserved bytes.

The execution logic of hash aggregation with leaky buffer
enabled hashtable is:

e At the beginning of the reduce task, the worker
fetches MapperOutputFiles from the other worker
nodes.

o The leaky buffer reads and deserializes the next
incoming key object from the MapperOutputFile
(step 1in Fig. 6).

e The leaky buffer reads the next 4 bytes from the
MapperOutputFile, which indicates the byte length,
L, of the following value object, copies the next L
bytes from the MapperOutputFile to the byteArray
in leaky buffer, and records the position of that value
object in the byteArray as i (step 2 in Fig. 6). When
the byteArray is full, it is extended by allocating a
new byteArray with double size and copying the
content of the old byteArray to the first half of the
new byteArray.

e The leaky buffer leaks the key object to the worker to
construct the hashtable. The worker matches the key
object in the hash table, and writes the index of the
value, i, to the intArray associated with its key (step
3 and 4 in Fig. 6).

e The above three steps are repeated until all key-
value pairs have been processed.

e At the end of the reduce task, the iterator iterates all
the key objects in the hash table. For each key, the
iterator invokes the deserializer to deserialize the

bytes of all the value objects in the associated with
that key, using the indexes in the intArray, and
returns the list of values as deserialized objects.

A comparison between Figs. 5 and 6 shows that the origi-
nal Spark hashtable maintains numerous JVM objects, while
the leaky buffer enabled hashtable maintains the bytes of
those value objects in one large byteArray. This significantly
reduces the number of JVM objects in the heap during most
of the task execution time, and thus relieves the memory
pressure.

4.3 Optimization of Leaky Buffer Enabled Hashtable
for Large Load Factor

The implementation described above works well for the sce-
nario where the hashtable has relatively small load factors
and large hashtable size so that the size of the intArrays are
fixed or rarely needs to be extended. For instance, in the
join operation, there are only two values associated with
one key in the hash table, because the primary keys in each
data table are unique and two key-value pairs, each from its
own data table, contribute to the two values for each key.
The implementation above is able to effectively consolidate
the bytes of all value objects into one large byteArray, and
thus relieves memory pressure.

However, when the hashtable has a large load factor,
such as in the case of groupByKey operation where many
values that have the same key are grouped together, main-
taining many large intArrays incurs space overhead, and
extending those intArrays as well as the large byteArray is
expensive. An optimization is to remove the large byteAr-
ray and replace each intArray with a byteArray, so that the
bytes of value objects are directly written to the byteArray
associated with its key in the hashtable. This optimization
avoids the space overhead incurred by the intArrays, and
the double and copy mechanism is able to effectively extend
the size of the byteArrays based on the fact that those byte-
Arrays could become very large.

4.4 Alternative Implementation

To know the byte lengths of serialized value objects, an
alternative implementation is to keep the original Mapper-
OutputFile format but parse the serialized bytes to learn
their lengths. In this alternative, we implement a specialized
deserializer that copies the bytes of the value object on the
fly while deserializing it, with about 100 lines of code
change on the Kryo serialization library that Spark depends
on. This specialized deserializer writes the current byte of
the object being deserialized to a byte array until reaching
the last byte of the object, and thus we have the bytes of the
object ready in that byte array. Note that we still need to
deserialize those bytes of the object at the very end of the
task. Thus, this alternative requires one more round of
deserialization of the value objects, but avoids the format
change that causes additional shuffle traffic.

5 EVALUATION

This section presents evaluation results to show that the
leaky buffer abstraction can:

e Achieve consistently good performance across a
large range of DMRs and improve the reduce stage

134 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1, JANUARY 2017

100 T 100 —% S —
% original-Spark] 0 original-Spark]
E 80 leaky-buffer W - g sof leaky-buffer T -
g =
E 60 | b S 60f |
> (4]
S 40 - R S 40 - i
@ 1]
8 @
% 20 R S 20} |
g 8

1™

0
0

40 60 80 100 200 400 600 800
(0.21) (0.14) (0.10) (0.08) (0.04) (0.02) (0.014) (0.01)
number of tasks(DMR)

Fig. 7. ip-countrycode.

100 —22 —

% original-Spark [
E 80F leaky-buffer ™MW
€

3 60|]
(]

(=]

S 40| -
(7]

[}

S 20} 1
°

e

40 60 80 100 200 400 600 800
(0.30) (0.20) (0.15) (0.12) (0.06) (0.03) (0.02) (0.01)

number of tasks(DMR)

Fig. 8. ip-keyword.

performance by up to 507 percent under the same
DMR (Sections 5.3 and 5.4).

Avoid task execution failures (Section 5.4).

Save memory usage by up to 87.5 percent
(Section 5.5).

Reduce garbage collection cost (Section 5.6).

Improve shuffle flow finish time (Section 5.7).

Scales well to various input sizes (Section 5.8).

5.1 Experiment Setup

All of the experiments in this section are conducted on
Amazon EC2. We use five m1.xlarge EC2 instances as Spark
workers, each with four virtual cores and 15 GB of memory.
The Spark version is 1.0.2, and the Java runtime version is
openjdk-7-7u71. The amount of executor memory per
worker is set to 6 GB in all experiments (except the one in
Section 5.5) to emulate an environment where the rest of the
memory is reserved for Spark data caching. Each worker
can concurrently run four tasks. We set the Spark disk spill
option to false so that the entire reduce task execution is in-
memory. To further eliminate the effect of disk I/O on
experiment results, we do not write the final results of jobs
to the disk.

5.2 Workload Description

The realistic workload we use to evaluate the leaky
buffer comes from the Berkeley Big Data Benchmark [15],
which is drawn from the workload studied by [27], [34].
We use this data set to evaluate the performance of both
the original Spark and the leaky buffer on two reduce
operations groupByKey and join, which are the two

40 60 80 100 200 400 600 800
(0.18) (0.12) (0.09) (0.07) (0.03) (0.018) (0.012) (0.009)
number of tasks(DMR)
Fig. 9. day-countrycode.

_100 —3% S —

% original-Spark [
£ 80 leaky-buffer ™MW
=

3 60 g
()

(=]

8 40 1
(2]

Q

S 20f 1
T

e

40 60 80 100 200 400 600 800
(0.26) (0.17) (0.13) (0.10) (0.053) (0.026) (0.017) (0.013)
number of tasks(DMR)
Fig. 10. day-keyword.

most representative hash aggregation operations in Map-
reduce systems. The groupByKey operation is to group
the values that have the same key together. It is typically
one of the first steps in processing unordered data. The
join operation is to join two tables together based on
the same primary key, and it is very common in datat-
able processing.

The groupByKey experiments in Section 5.3 use the
Uservisits table from the data set. The join experiments in
Section 5.4 use both the Uservisits table and the Rankings
table. The schema of the two tables can be found in [34].

Besides the realistic workload, we generate an artificial
workload in the form of key-value pairs. The artificial work-
load enables us to control different variables such as the
number of key-value pairs, the length of the values, the
input file size, etc., and thus we can demonstrate the scal-
ability of the leaky buffer under a variety of inputs.

5.3 Leaky Buffer on Realistic Workload:
groupByKey

In each of the following five use scenarios, we extract two
columns from the Uservisits table, so that one column is the
list of keys and the other is the list of values, and run
groupByKey over this list of key-value pairs such that the
values are grouped by the keys. The captions of Figs. 7, 8, 9,
10, and 11 represent the column names of the key-value
pairs. Each scenario represents a case where the user applies
groupByKey to analyze interesting facts from the Uservi-
sits table. For example, in the ip-countrycode scenario,
where we group countrycodes by prefixes of IP addresses
(i.e., subnets), the result data set reflects the affiliation of IP
subnets to different countries.

LIU AND NG: LEAKY BUFFER: A NOVEL ABSTRACTION FOR RELIEVING MEMORY PRESSURE FROM CLUSTER DATA... 135

100 — B —1% ; ; : :
0 original-Spark]
Q
£ 80} leaky-buffer ™MW
g 60
5 \
()]
S 40+ i
(7]
[
S 20t .
3
et 0 &.
40 60 80 100 200 400 600 800
(0.26) (0.17) (0.13) (0.10) (0.053) (0.026) (0.017) (0.013)
number of tasks(DMR)

Fig. 11. month-keyword.

200 m 204 ; ; : :

v original-Spark]
£ 150 | leaky-butter |
E

© 100 \]
©

13

8 50t]
=]

©

J

40 60 80 100 200 400 600 800
(0.83) (0.55) (0.41) (0.33) (0.16) (0.083) (0.055) (0.041)
number of tasks(DMR)
Fig. 12. rank-revenue.

The input file size of the Spark job in each scenario
ranges from 11 to 18 GB. The job has a map stage and a
reduce stage, and each stage consists of numerous tasks. In
the reduce stage, we vary the number of tasks to get differ-
ent task sizes and thus different DMRs to evaluate with dif-
ferent levels of memory pressure. The number of reduce
tasks and the corresponding per-reduce-task DMRs are
indicated on the x-axis of Figs. 7, 8, 9, 10, and 11. The maxi-
mum number of tasks being evaluated is 800; an even larger
number of tasks will give an unreasonably small DMR. We
report the reduce stage run time in above figures as the per-
formance metric.

From the results of the original Spark, we can observe
that the reduce stage performance collapses as the number
of tasks becomes smaller and the DMR becomes higher. In
the day-keyword scenario in Fig. 10, a seemingly generous
DMR of 0.26 with 40 tasks already causes a performance col-
lapse of 631 percent compared to a DMR of 0.017 with 600
tasks. In other scenarios where the number of tasks is 40,
the original Spark also has a serious performance collapse
up to a few hundred percents. In the case of 60 tasks, the
original Spark has a less serious but still considerable per-
formance degradation.

In all cases with a small number of tasks, using the
leaky buffer achieves a significant performance improve-
ment over the original Spark. When the number of tasks
is 40, the performance improvement is 401 percent in the
day-keyword scenario and 303 percent in the ip-keyword
scenario. The performance of leaky buffer is consistently
good in all cases, and noticeably better than the original
Spark in most of the cases. In the cases where the DMR
is extremely low (less than 0.02) and the number of tasks

200 = S

0 original-Spark

£ 150 | leaky-buffer |
=

2

100 1
©

]

8 50]
>

T

e

40 60 80 100 200 400 600 800
(0.75) (0.50) (0.37) (0.30) (0.15) (0.075) (0.050) (0.037)

number of tasks(DMR)
Fig. 13. rank-countrycode.
200 320 —_—

w original-Spark [
qé150 | leaky-buffer NNY |
<

2

$ 100 | 1
©

]

8 50t |
>

o

e

F

40 60 80 100 200 400 600 800
(0.72) (0.48) (0.36) (0.29) (0.14) (0.072) (0.048) (0.036)
number of tasks(DMR)

Fig. 14. rank-duration.

is high, there is already very little memory pressure for
original Spark such that leaky buffer cannot improve the
performance by relieving memory pressure, while it has
slightly worse performance due to the extra memory
copy required in the design.

5.4 Leaky Buffer on Realistic Workload: join

We evaluate the join operation with three scenarios. In
each scenario, we join the Rankings table to the specific col-
umns from the Uservisits table using the webpage URL as
the primary key in order to analyze the interesting correla-
tion between ranks of webpages and facts from the Uservi-
sits table. For example, the rank-revenue scenario in Fig. 12
gives insights on whether higher ranked webpages generate
more revenue.

The results in Figs. 12, 13, and 14 show that the original
Spark must use 80 or more tasks to avoid a failure. For cases
with 40 and 60 tasks, the task executors of the original Spark
throw OutOfMemoryError and the reduce stage fails after
retries, despite the fact that 60 tasks represent only a moder-
ately aggressive DMR of around 0.50. The leaky buffer can
finish the job in all cases, even in the case of 40 tasks with a
high DMR of 0.75.

In the case with 80 tasks, the original Spark has a high
reduce stage run time in all three scenarios, the worse of
which is 711 seconds in Fig. 12, while the leaky buffer
can improve the performance by 507 percent in the rank-
revenue scenario, 174 percent in the rank-countrycode sce-
nario, and 178 percent in the rank-duration scenario. In all
other cases, the leaky buffer still achieves substantial perfor-
mance improvements.

136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 1,

7 T T T T
original-Spark]
6 leaky-buffer 1
~5F M Mo 7
o)
g
5 4+ . |
2
o L ,
g3
£
2 L .
1 L .
\ \ NI NN N

ip-countrycode
ip-keyword
day-countrycode
day-keyword
month-keyword
rank-revenue
rank-countrycode
rank-duration

Fig. 15. Minimum memory size to achieve comparable performance to
the best performing spots in Figs. 7, 8, 9, 10, 11, 12, 13, and 14.

5.5 Tuning versus Leaky Buffer: Which is Better?
The previous results show that the original Spark must be
carefully tuned to achieve acceptable performance. Unfortu-
nately, performance tuning in today’s systems is manual
and tedious; efficient, automatic performance tuning
remains an open problem. Spark uses the number of HDFS
blocks of the input dataset as the default number of tasks
but allows this setting to be manually changed. Another
popular framework Tez [35], which shares some similar
functionalities as Spark but belongs to the Hadoop and
Yarn ecosystem, relies on the manual configuration of a
parameter called DESIRED_TASK_INPUT_SIZE to deter-
mine the number of tasks. Since the level of memory pres-
sure is highly sensitive to the availability of cluster
resources and workload characteristics, the user must
tediously perform numerous tests at different number-of-
task settings for each workload and for each cluster environ-
ment in order to determine the corresponding performance
sweet spot. In contrast, leaky buffer does not require such
manual tuning to achieve good performance.

Even if the user were able to manually determine the per-
formance sweet spot for a particular workload, the leaky
buffer still has one predominant advantage that, it requires
less amount of memory than original Spark to archive

154

w 100 ‘ ‘ ‘

TaEI original-Spark]
.i 80 leaky-buffer WY |
2 60 i
S

s 40t i
(7]

8 20t i
=]

g F

29

19 49 69 89 109 12g
(0.48) (0.24) (0.12) (0.08) (0.06) (0.048) (0.04)

memory size(DMR)

Fig. 16. Reduce stage run time of ip-countrycode scenario with 100
tasks and various memory sizes.

JANUARY 2017
100 R e 100 - —
— Total Total
80l GC ===y | 80l GC ===y |
60 |] 1 60
= L
40 | E | 40 [T
20 3 1 20

40 60 80 100200 400
number of tasks
leaky_buffer

40 60 80 100200400
number of tasks
original_Spark

Fig. 17. Garbage collection time spent in the reduce stage.

comparable performance. Fig. 15 shows the minimum
amount of memory that original Spark and leaky buffer
require to achieve comparable performance (no more than 5
percent worse) to using 6 G memory and the optimal num-
ber of tasks as found in previous experiments. Leaky buffer
is able to save 33 - 87.5 percent in memory usage in the eight
scenarios. In the day-keyword scenario, the improvement is
still 33 percent despite the fact that it is a particularly mem-
ory intensive scenario as there are more keys (days) in the
hashtable per task and the value (keyword) could be very
long. Leaky buffer is also able to save memory with non-
optimal number of tasks. Fig. 16 shows the reduce time in
the ip-countrycode scenario with 100 tasks and varying
amount of memory. Leaky buffer can reduce memory usage
from 8 to 1 GB while achieving even better performance.

With leaky buffer's lower memory requirement, the
same cluster hardware can handle larger datasets and/or
more simultaneous jobs. Alternatively, the extra memory
can be utilized by RAMDisk or in-memory storage frame-
works such as Tachyon [29] to further improve the system
performance.

5.6 Garbage Collection Cost Reduction

Fig. 17 shows the portion of time spent in garbage collec-
tion during the reduce stage in the ip-countrycode sce-
nario. For the original Spark, the garbage collection time
decreases as the number of tasks increases. For the leaky
buffer, the garbage collection time is consistently low. We
can conclude that a main saving in reduce stage run time
of the leaky buffer results from the reduction of the gar-
bage collection time. Less time spent in garbage collection
in the leaky buffer leads to less stop-the-world interrup-
tions, and consequently reduces shuffle flows finish
times as will be shown next.

5.7 Shuffle Flows’ Finish Times Reduction

Because severe stop-the-world garbage collection events
happen during the reduce stage of the original Spark, the
JVM is frequently paused and there is a high chance that
incoming and outgoing shuffle flows on workers are inter-
rupted. Fig. 18 shows CDF plots of shuffle flows’ finish
times for different number of tasks for both the original
Spark and the leaky buffer using the ip-countrycode sce-
nario. At each moment in the shuffle, there could be 1 to 16
concurrent shuffle flows incoming to or outgoing from one
node, because there are four other nodes and each node
runs up to four tasks at a time. When the number of tasks
is 40, the sizes of the shuffle flows fall within the range of

LIU AND NG: LEAKY BUFFER: A NOVEL ABSTRACTION FOR RELIEVING MEMORY PRESSURE FROM CLUSTER DATA... 137

40 tasks 60 tasks
[ee]
@ -
~
o
B —— original_Spark B —— original_Spark
o | - - leaky_buffer o | - - leaky_buffer
oS T T T T oS T T T T
0 1000 3000 5000 0 1000 3000 5000
flow finish time(ms) flow finish time(ms)
80 tasks 100 tasks
[ee]
p
~
o
B —— original_Spark B —— original_Spark
o | - - leaky_buffer o | - - leaky_buffer
O T T T O T T T
0 1000 3000 5000 0 1000 3000 5000
flow finish time(ms) flow finish time(ms)
200 tasks 400 tasks
@ | @ |
o o
~ ~
o o
B —— original_Spark B —— original_Spark
o | - - leaky_buffer o | - - leaky_buffer
O T T T O T T T
0 1000 3000 5000 0 1000 3000 5000

flow finish time(ms) flow finish time(ms)

Fig. 18. CDFs of shuffle flows’ finish times under different scenarios.

8-10 MB. Note that the nodes have gigabit Ethernet connec-
tions. Ideally the flows should complete within 64-800 milli-
seconds. However, for the original Spark, in the case of 40
tasks, about half of the flows complete in more than
1,000 ms and around 5 percent of the flows complete in
more than 5,000 ms. In cases with 60, 80, 100, and 200 tasks,
the shuffle flows’ finish times are also far from ideal. In con-
trast, using the leaky buffer can improve the shuffle flows’
finish times significantly.

5.8 Leaky Buffer on Artificial Workload: Measuring
Scalability
To completely evaluate the performance improvement of
the leaky buffer and explore other dimensions of the work-
load, we generate an artificial workload and design experi-
ments to measure scalability. Each experiment is run with
the default number of tasks chosen by the original Spark.
Note that Spark sets the default number of map and reduce
tasks to the number of blocks in the input file, and this
default number of reduce tasks gives a DMR of around 0.04.
This artificial data set enables us to evaluate scalability
with different input sizes and formats. The data set format
is a list of key-value pairs. The keys are five digit numbers
following a uniform distribution, and the values are various
lengths of characters. To scale the artificial data set, we
either increase the number of key-value pairs or increase
the lengths of the value characters.

450 T T T T T 120 T T T T T
@ 400 original-Spark 1 | @ original-Spark]
£ 350 - leaky-buffer MY | g 100 leaky-buffer TV |

c 80
2
o 60
E
@ 40
[
S
3 20
[
05X 1X 2X 3X 4X =735 10 15 20
input size length of value

Fig. 19. Artificial data set evaluation. 1X on the left graph denotes 10°
key-value pairs of total size 6.8 GB; the experiment on the right graph
uses a fixed number of 10° key-value pairs with different lengths of the
value characters.

The left graph on Fig. 19 shows the result of scaling the
number of key-value pairs. As expected, the reduce stage
run time for both the original Spark and the leaky buffer
scales linearly with the input size. The leaky buffer achieves
nearly a 100 percent performance improvement in all cases.

The right graph in Fig. 19 shows the result of scaling up
the input size by increasing the lengths of the values. The
performance improvement of the leaky buffer diminishes as
the values become longer. The reason is that, as the input
size grows with the lengths of the values, the default num-
ber of tasks increases. Because the total number of key-value
pairs is fixed, the number of key-value pairs per task
decreases, so there is fewer number of objects in memory
per task, and thus there is less memory pressure and less
performance improvement is achieved by the leaky buffer.

5.9 Overhead Analysis

The leaky buffer incurs overhead that mainly affects two
aspects. First, in the map stage of the job, under the first
implementation, the mapper needs to write the lengths of
the values, which is a 4-byte int type, for each key-value
pair. This overhead turns out to be negligible. For instance,
in the ip-countrycode scenario and the rank-countrycode
scenario, the percentage difference between the map stage
run time for the original Spark and the leaky buffer ranges
from —1.9 to 1.3 percent with a mean difference of less than
0.1 percent.

Another source of overhead is the increase in network
shuffle traffic due to the aforementioned 4-byte lengths of
the values. For the ip-countrycode case in Section 5.3, the
total shuffle traffic is 4.39 GB for the original Spark and
4.71 GB for the leaky buffer. The network transfer cost for
the extra 0.32 GB over 5 nodes is small compared to the
overall benefits of the leaky buffer. The performance
improvements of the leaky buffer on the reduce stage
reported previously already factor in the overhead of the
extra shuffle traffic.

5.10 Alternative Implementation Evaluation

Section 4.4 describes an alternative implementation of
the leaky buffer. Fig. 20 compares the first implementation
against this alternative implementation, using the ip-
countrycode scenario from Section 5.3. The result shows
that the alternative implementation has a little longer
reduce stage run time but still achieve consistent perfor-
mance. The slowdown comes from the fact that this

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO. 1,

100

leaky_buffer ——
alternative_impl =

40|

20 +

reduce stage run time(s)

h

NN
N
NI

N W ORY] ORS]R
60 80 100 200 400
number of tasks

FRN ii]
600 800

Fig. 20. Comparing two implementations of the leaky buffer.

alternative implementation needs to deserialize the values
in key-value pairs twice — the first time is to get the size of
the serialized value object, and the second time is to actually
deserialize those bytes into a JVM object.

6 RELATED WORK

Managing data in memory. For building in-memory data
processing frameworks, there is existing work on better
managing data in memory. Tachyon [29] is a memory-cen-
tric distributed file system. Tachyon outperforms Spark’s
native caching because it caches data outside of the JVM
heap and thus bypasses JVM’s memory management to
reduce the garbage collection cost.

Similar objectives also exist in datatable analytics appli-
cation design. There are systems that propose datatable
columnar storage, in which a datatable is stored on per col-
umn basis [30], [37]. The columnar format gracefully
improves storage space efficiency as well as memory usage
efficiency. The designer of Shark [40] recognizes the perfor-
mance impact from garbage collection and leverages the
columnar format in in-memory datatable caching to reduce
the number of JVM objects for faster garbage collection.

Compared to the above practices, the leaky buffer has a
similar objective of reducing the number of persistent
objects but addresses an orthogonal problem with a differ-
ent approach. Tachyon and columnar storage help to man-
age data caching that is rather static, while the leaky buffer
tackles the memory pressure problem from dynamic in-
memory data structures during data processing and
computation.

Trash Day is a runtime system for coordinating the gar-
bage collection activities among multiple worker nodes in
cloud systems [31] to avoid workers from waiting on each
other’s garbage collection activities and thus improve over-
all performance. In contrast, the leaky buffer represents an
orthogonal approach which focuses on relieving the mem-
ory pressure and eliminating the source of expensive gar-
bage collection activities, instead of optimizing the garbage
collection behavior. The leaky buffer and the Trash Day
techniques can be employed simultaneously to maximize
performance.

Resource allocation and remote memory. There has been
research work on resource allocation for MapReduce sys-
tems [28], [38], [39]. These efforts mainly focus on resource
allocation at the machine or compute slot level, and do not
specifically tune memory allocation to address memory
pressure. DRF [26] is an allocation scheme for multiple

JANUARY 2017

resource types including CPU and memory. It requires a
job’s resource demands a priori for allocation, but it is hard
for the user to predict the potential memory pressure in a
job and state an optimal memory demand that both achieves
good performance and avoids wasting resources. To the
best of our knowledge, there is not yet any resource alloca-
tion approach that can address the memory pressure prob-
lem for in-memory data processing frameworks, and this
may represent a direction for future research.

Remote memory access has been a widely used tech-
nique in computer systems research [23], [32], [33]. Sponge-
Files [25] leverages the remote memory capability to
mitigate data skew in MapReduce tasks by spilling exces-
sive, static data chunks to idle memory on remote worker
nodes rather than on local disk, and thus offloads local
memory pressure to a larger shared memory pool. This
approach, however, cannot resolve the memory pressure
problem in reduce tasks due to the prohibitively high
latency cost of operating on dynamic data structures (e.g.,
hashtable) in remote memory.

Engineering efforts on memory tuning and shuffle redesign.
There are guidelines from engineering experiences on tun-
ing data processing frameworks. The Spark website pro-
vides a tuning guide [9]; there are also tuning guides for
Hadoop [10], [11]. Those guidelines include instructions for
tuning JVM options such as young and old generation sizes,
garbage collector types, number of parallel garbage collector
threads, etc. From our experience, JVM tuning cannot lead
to any noticeable performance improvement as demon-
strated in Section 2.3.

The Spark tuning guide [9] provides various instructions
for tuning different Spark configurations. The most memory
pressure related instruction is to increase the number of
map and reduce tasks. This simple practice helps relieve the
memory pressure and avoid the OutOfMemoryError, but
how to determine the right number of tasks remains as a
challenge to the users as stated in Section 5.5. Increasing the
number of tasks also exposes the risk of resource under-uti-
lization, I/O fragmentation, and/or inefficient task schedul-
ing. In the ip-countrycode scenario, the reduce time with
2,000 tasks is 9.6 percent longer than that with 400 tasks.

Engineers from Cloudera recognize the slowdowns and
pauses in Spark reduce tasks are caused by memory pres-
sure, and propose a redesign using a full sort-based shulffle,
which merges numerous on-disk sorted blocks from map
tasks during shuffle [20]. By moving part of the shuffle exe-
cution from memory to disk, it does help to reduce memory
pressure, but this approach is a throwback to the traditional
Hadoop style on-disk sort-based shuffle, which contradicts
the in-memory computing paradigm that Spark aims to
leverage.

7 CONCLUSION

We have made two contributions in this paper. First, we
have diagnosed the memory pressure problem in cluster
data processing frameworks and identified three precondi-
tions for performance collapse and failure. It reveals that
the memory pressure problem can lead not only to local per-
formance degradations, but also to slow shuffle data trans-
fers and cluster-wide poor CPU utilization, both of which

LIU AND NG: LEAKY BUFFER: A NOVEL ABSTRACTION FOR RELIEVING MEMORY PRESSURE FROM CLUSTER DATA... 139

amplify the negative performance effects. Second, we have
proposed a novel programming abstraction called the leaky
buffer that is highly effective in addressing the memory pres-
sure problem in numerous experimental use cases — it dras-
tically reduces the occurrence of memory-related failures,
improves performance by up to 507 percent and reduces
memory usage by up to 87.5 percent. Furthermore, the leaky
buffer abstraction is simple to grasp and has wide applica-
bility since many data processing tasks do not require the
processing of all incoming data at once.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
thoughtful feedback. This research was sponsored by the
NSF under CNS1422925, CNS1305379 and CNS1162270, an
IBM Faculty Award, and by Microsoft Corp. Zhaolei Liu
was also supported by a Rice University Computer Science
Graduate Fellowship.

REFERENCES

[1] (2015). Apache giraph [Online]. Available: http://giraph.apache.
org/

[2] (2015). Apache hadoop [Online]. Available: https://hadoop.
apache.org/

[3] (2015). Apache pig [Online]. Available: https:/ /pig.apache.org/

[4] (2015). Apache spark [Online]. Available: https://spark.apache.
org/

[5] (2015). Apache storm [Online]. Available: https:/ /storm.apache.
org/

[6] (2015). Apache tez [Online]. Available: https:/ /tez.apache.org/

[7] (2015). Java se 6 hotspot[tm] virtual machine garbage collection
tuning [Online]. Available: http://www.oracle.com/technet-
work/java/javase/gc-tuning-6-140523.html

[8] (2015). Kognitio [Online]. Available: http://kognitio.com/

[9]1 (2015). Tunning spark [Online]. Available: https://spark.apache.
org/docs/1.2.0/tuning.html

[10] (2012). Amd hadoop performance tuning guide [Online]. Avail-
able: http://www.admin-magazine.com/HPC/Vendors/AMD/
Whitepaper-Hadoop-Performance-Tuning-Guide

[11] (2012). Java garbage collection characteristics and tuning guide-
lines for apache hadoop terasort workload [Online]. Available:
http:/ /amd-dev.wpengine netdna-cdn.com/wordpress/media/
2012/10/ GarbageCollectionTuningforHadoopTeraSortl.pdf

[12] (2013). Gartner says in-memory computing is racing towards
mainstream adoption [Online]. Available: http://www.gartner.
com/newsroom/id /2405315

[13] (2013). It revoluton: How in memory computing changes every-
thing [Online]. Available: http://www.forbes.com/sites/ciocen-
tral/2013/03/08/it-revolution-how-in-memory-computing-
changes-everything

[14] (2013). Tips for tning the garbage first garbage collector [Online].
Available: http:/ /www.infoq.com/articles/tuning-tips-G1-GC

[15] (2014). Berkeley big data benchmark [Online]. Available: https://
amplab.cs.berkeley.edu/benchmark/

[16] (2014). Spark gc overhead limit exceeded [Online]. Available:
http:/ /apache-spark-user-list.1001560.n3.nabble.com/GC-over-
head-limit-exceeded-td3349.html

[17] (2014). Spark groupby outofmemory [Online]. Available: http://
apache-spark-user-list.1001560.n3.nabble.com /Understanding-
RDD-GroupBy-OutOfMemory-Exceptions-td11427 html

[18] (2014). Spark job failures talk [Online]. Available: http:/ /www.sli-
deshare.net/SandyRyza/spark-job-failures-talk

[19] (2014). Storm consumes 100% memory [Online]. Available:
http://qnalist.com/questions /5004962 /storm-topology-con-
sumes-100-of-memory

[20] (2015). Improving ort performance in apache spark: It is a double
[Online]. Available: http://blog.cloudera.com/blog/2015/01/
improving-sort-performance-in-apache-spark-its-a-double/

[21] (2015). Tracing garbage collection [Online]. Available: http://en.
wikipedia.org/wiki/Tracing garbage collection

[22] (2015). Tuning jav garbage collection for spark applications
[Online]. Available: https://databricks.com/blog/2015/05/28/
tuning-java-garbage-collection-for-spark-applications.html

[23] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson,
“Cooperative caching: Using remote client memory to improve
file system performance,” in Proc. Ist USENIX Conf. Operating
Syst. Design Implementation, 1994.

[24]]. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” in Proc. 6th Conf. Symp. Opearting Syst.
Design Implementation, 2004, pp. 10-10.

[25] K. Elmeleegy, C. Olston, and B. Reed, “Spongefiles: Mitigating
data skew in mapreduce using distributed memory,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2014, pp. 551-562.

[26] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica, “Dominant resource fairness: Fair allocation of mul-
tiple resource types,” in Proc. 8th USENIX Conf. Netw. Syst. Design
Implementation, 2011, pp. 323-336.

[27] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data
analysis,” in Proc. IEEE 26th Int. Conf. Data Eng. Workshops,
Mar. 2010, pp. 41-51.

[28] G. Lee, N. Tolia, P. Ranganathan, and R. H. Katz, “Topology-
aware resource allocation for data-intensive workloads,” in Proc.
1st ACM Asia-Pacific Workshop Workshop Syst., 2010, pp. 1-6.

[29] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frame-
works,” in Proc. ACM Symp. Cloud Comput., 2014, pp. 6:1-6:15.

[30] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu, “Llama:
Leveraging columnar storage for scalable join processing in the
mapreduce framework,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2011, pp. 961-972.

[31] M. Maas, T. Harris, K. Asanovi¢, and J. Kubiatowicz, “Trash day:
Coordinating garbage collection in distributed systems,” in Proc.
15th Workshop Hot Topics Operating Syst., May 2015, p. 1.

[32] E. P. Markatos and G. Dramitinos, “Implementation of a reliable
remote memory pager,” in Proc. Annu. Conf. USENIX Annu. Tech.
Conf., 1996, pp. 15-15.

[33]]. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazieres, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum,
S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for ram-
clouds: Scalable high-performance storage entirely in dram,”
SIGOPS Oper. Syst. Rev., vol. 43, no. 4, pp. 92-105, Jan. 2010.

[34] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt,
S. Madden, and M. Stonebraker, “A comparison of approaches
to large-scale data analysis,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2009, pp. 165-178.

[35] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and
C. Curino, “Apache tez: A unifying framework for modeling and
building data processing applications,” in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2015, pp. 1357-1369.

[36] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3r:
Increased performance for in-memory Hadoop jobs,” Proc. VLDB
Endow., vol. 5, no. 12, pp. 1736-1747, Aug. 2012.

[37] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’'Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik, “C-store: A column-oriented DBMs,” in
Proc. 31st Int. Conf. Very Large Data Bases, 2005, pp. 553-564.

[38] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: Automatic
resource inference and allocation for mapreduce environments,”
in Proc. 8th ACM Int. Conf. Auton. Comput., 2011, pp. 235-244.

[39] D. Warneke and O. Kao, “Exploiting dynamic resource allocation
for efficient parallel data processing in the cloud,” IEEE Trans.
Parallel Distrib. Syst., vol. 22, no. 6, pp. 985-997, Jun. 2011.

[40] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and
I. Stoica, “Shark: Sql and rich analytics at scale,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2013, pp. 13-24.

[41] M. Zaharia, M. Chowdhury, T. Das, A. Dave,]. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Netw. Syst. Design Imple-
mentation, 2012, pp. 2-2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.28, NO.1, JANUARY 2017

Zhaolei Liu received the bachelor of science
degree in computer science from 2010 to 2013
and the master of science degree in computer
science from 2013 to 2015, both from Rice
University. His research interest has been in com-
puter networking, big data processing frame-
works, and distributed systems.

T. S. Eugene Ng received the PhD degree in
computer science from Carnegie Mellon Univer-
sity in 2003. He is a full professor of computer sci-
ence at Rice University He received a US
National Science Foundation (NSF) CAREER
Award in 2005 and an Alfred P. Sloan fellowship
in 2009. His research interest lies in developing
new network models, network architectures, and
holistic networked systems that enable a robust
and manageable network infrastructure.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

