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Abstract

A basic question in navigation is how can the planner devise a path to a
destination when parts of the roads might be blocked, and the planner knows
whether a road is blocked only when actually reaching that road. A possible
formalization of this problem is the Canadian Traveler Problem (CTP) in
which a traveling agent is given a weighted graph with a given source and
destination. Although the graph is known, each edge may be blocked with
a known probability; the agent learns that an edge is blocked only upon
reaching a vertex incident on that edge. The problem is to find a policy for
the agent to travel from the source to the destination, which minimizes the
expected travel cost.

In this work we study theoretical aspects, and various variants, of the
CTP. As the CTP is a problem in decision-making under uncertainty, we
model the CTP as a Partially Observable Markov Decision Process (POMDP).
Using this model we can observe and analyze various policies, and by doing
that we construct optimal policies that solve the CTP.

Originally stated by Papadimitriou and Yannakakis [31], the adversarial
version of the CTP was shown to be PSPACE-complete, with the stochas-
tic version shown to be in PSPACE and #P-hard. We first show that
the stochastic CTP is also PSPACE-complete: initially proving PSPACE-
hardness for the dependent version of the stochastic CTP (called CTP-Dep),
and proceeding with gadgets that allow us to extend the proof to the inde-
pendent case. This result, published in [14], settles a question that was open
for two decades.

A common approach in Computer Science, called ”divide and conquer”,
is to find an optimal solution to a problem by decomposing the problem into
sub-problems, and finding an optimal solution to each sub-problem. In this
work, we indeed suggest a decomposition method for the CTP. Since the
"divide and conquer” approach does not necessarily achieve optimal poli-

cies on general CTP-graphs, we define specific constraints that every policy
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has to meet in order to use the ”‘divide and conquer”’” approach. We in-
troduce a CTP variant, in which every policy for a CTP instance ”must”
solve certain CTP sub-instances as well. By defining the factored-cost of
CTP sub-instances, we introduce the partition framework through which a
CTP instance can (not always efficiently) be decomposed into sub-instances.
Then, a general optimal solution can be efficiently found by finding an opti-
mal solution to each sub-instance.

Another CTP variant introduced in this work, called CTP-Tree, is the
CTP on a tree-like structure. CTP-Tree is a generalization of the CTP
on a disjoint-paths graph, as appeared in [6]. We define the concept of
committing vertex in which the agent is bound to explore an entire subtree
with a given vertex being the root. Using the partition framework, we first
provide an algorithm that yields polynomial time solution to CTP-Tree in
which all vertices are committing. Using this result we provide an efficient
dynamic programming algorithm for CTP-Tree in which all vertices but one
(with unblocked outgoing edges) are committing. In addition, we provide a
polynomial time solution to a specific CTP-Tree, called EFC-CTP-Tree, in
which all the factored-cost of subtrees of the same height are equal. We test
empirically how well such solutions to EFC-CTP-Tree approximate optimal
solutions to the more general CTP-Tree.

Finally, in many realistic settings, the CTP needs to be solved for a group
of agents moving sequentially, requiring minimization of the combined travel
cost of all agents. For example, think of an owner of a fleet of trucks who has
to move the trucks, one after the other, from a single source to a single desti-
nation. We introduce a multi-agent variant of the CTP, called the Repeated-
CTP, in which an agent moves only after its predecessor has reached the
destination. We provide efficient optimal solutions to the Repeated-CTP on
disjoint-path graphs. This result appeared in [7].

Keywords: Canadian Traveler Problem, Navigation under Uncertainty,
Stochastic Shortest Path with Recourse.



Chapter 1
Introduction

The Canadian Traveler Problem (CTP) is a problem in navigation under
uncertainty. Given a graph, an agent is initially posed at a start vertex. By
performing move actions along the edges, the agent has to reach a goal vertex.
Suppose that the agent has complete knowledge of the graph structure and
the cost of the edges. However, some of the edges might be blocked with a
certain probability, and the agent observes that an edge is blocked only when
the agent reaches a vertex incident on that edge. The task is to minimize the
travel cost from the start to the goal. Since some of the graphs edges may
be blocked, a simple search for a path does not work; a solution is a policy

that has the smallest expected traversal cost.

Motivation for the CTP comes from problems in real life. Consider, for
example, the following navigation problem. The planner might be familiar
with the map (e.g., Canada), and with the cost of the roads, whether the cost
is the length of the road or the time to traverse the road; still, the planner
has only limited knowledge concerning the current status of the roads. A
certain road might be blocked (e.g., snow), and the planner has no way of
knowing it, before actually reaching that road. Hence search algorithms that
find the shortest path in a graph might be useless. The question the planner
asks is what is the plan for choosing the roads that ensures the minimum

expected cost to reach its destination.

In this work we discuss some of the deep theoretical challenges in the



1. Introduction

CTP. The exact complexity class of the CTP has remained unsolved for
more than two decades. We settle the issue in this dissertation, proving that
the CTP is PSPACE-complete. As the CTP is a classical problem in decision
making under uncertainty, we model the CTP as a Partially Observable
Markov Decision Process (POMDP). That way, we can carefully construct
policies, and define various variants of the CTP. We then use these variants to
define ”divide and conquer” methods for the CTP. Later, we implement these
methods in a special tree-like structure CTP called CTP-Tree. In addition,
we introduce several variants of the CTP, which we analyze theoretically, and

provide polynomial time algorithms to specific CTP instances.

Dissertation structure. This dissertation is organized as follows. In
Chapter 2 we provide notation and background on models of decision making
under uncertainty. In Chapter 3 we discuss the complexity class of the CTP
and show that the CTP is PSPACE-complete. In Chapter 4 we discuss de-
compositions of the CTP, and introduce the so called ”partition framework”.
In Chapter 5 we introduce CTP-Tree, and implement some of the techniques
gained in Chapter 4 to provide optimal solutions for special CTP-Tree in-
stances. In Chapter 6 we introduce a variant of multi-agent CTP called
Repeated-CTP, and provide an optimal solution for Repeated-CTP with a
disjoint paths graph.



Chapter 2

Background

2.1 Notation

Graphs. A graph G is an ordered pair (V) E) where V is the set of vertices,
and F C V' xV is the set of edges. A graph G' = (V' E) is called a subgraph
of G =(V,E)if V' CV, and E' C E. A weighted graph is a graph with a
(non-negative) weight function w : E — R=% over the edges. We denote the

set of edges incident on a vertex v by E,,.

Trees. A (rooted) tree T = (V, E) is a connected acyclic graph, with a
designated vertex r € V called the root. The sequence of vertices that form
a path from the root to v is called the trunk of v. That is, H, = (vo, -+ -v;) is
the trunk of v if H, form a simple path in T, vy = r, and v; = v. The splitting
vertex of vertices v and u with trunks H, = (vo, - - - v;), and H, = (uo, - - - u;)
is the maximum k > 0 such that v, = uy.

For a tree T" and u,v € V' if u # v, and v is in the trunk of u, then v is
called an ancestor of u, and u is called a descendant of v. We also say u is
reachable from v. If v is an ancestor of u and (v,u) € F, then v is called the
parent of u, and wu is called a child of v. Vertices in T that have the same
parent are called siblings. If w is a child of v, and z is a child of u, then z
is called a grandchild of v, and v is the grandparent of z. The parent of u is

denoted by Parent(u). If v = Parent(u), then (v, u) is called an outgoing

5



2. Background

edge of v and an incoming edge of u. An intermediate vertex in T is a vertex
with at least 2 outgoing edges. We define a partial order <7 over V' x V such
that ©w <7 v if u is a descendant of v. If © <7 v then the distance from v to
u is the number of edges in the simple path from v to u.

A leaf in a tree T is a vertex without children. The depth of a vertex
v € T, denoted by depth(v), is the number of vertices in the trunk of v
minus 1. Note that depth(r) = 0. Depth(T'), the depth of the tree, is defined
to be maz,erdepth(v). The height of a vertex v, denoted by height(v), is
the largest distance from v to a leaf [ such that [ <; v. The height of T,
Height(T), is defined to be the height of the root, height(r). Rank(v) is
the set of all vertices u € T for which depth(u) = depth(v). A balanced
tree is a tree in which every two vertices of the same depth have the same
height. A cut in T is a set S C T such that u A v and v A u for every
u,v € S. S is a mazximal cut in T, if S is a cut in T, and every vertex v & S
is either an ancestor or a descendant of a vertex in S. For a vertex v € V,
T(v) = {ulu < v} is the subtree of T with a root v. If v # r, then the
subtree 779 (v) is defined to be T'(v) with an additional vertex Parent(v)
and an additional edge (Parent(v),v). The size of the tree T" is the number

of vertices in 7.

Functions. Given functions f, f’ from A to R, we say that ' < fis f'(a) <
f(a) for every a € A. For a function f: A — B, and A’ C A, the restriction
of f to A’ is the function f [ A" : A" — B where (f | A")(a) = f(a) for all
ac A

2.2 The Canadian Traveler Problem

The Canadian Traveler Problem (CTP), first defined by Papadimitriou &
Yannakakis [31], is a tuple (G, s,t,p,w), where G = (V, E) is a finite con-
nected undirected weighted graph, with a source vertex s, and a target vertex
t. Every edge e € E has a non-negative cost w(e), and a probability (inde-
pendent for all the edges) p(e) of being blocked. The probability that e is

unblocked is denoted by g(e) = 1 —p(e) . Starting at s, an agent can traverse

6



2.2. The Canadian Traveler Problem

unblocked edges for a cost of w(e). The status of an edge (blocked,unblocked)
is revealed to the agent only when the agent arrives at a vertex incident on
that edge, and this status of the edge remains fixed subsequently. The goal
of the agent is to reach ¢ while minimizing the total travel cost, which is
the sum of the cost of the edges that the agent traversed to reach vertex t.
As the exact travel cost is uncertain until ¢ is reached, the task is to devise
a policy that minimizes the expected travel cost. Such policy is called an
optimal policy

€o o 1p(e1)

€1

€9 10

Figure 2.1: A simple CTP instance. w|p denotes cost | blocking probability.

For example, Figure depicts a simple CTP instance. The agent at s
has two "reasonable” policies to choose from: the first policy, my, is to reach
t by traversing the unblocked edge ey for a cost of 10. The expected cost
of m is 10. The second policy, 79, is to traverse e, and observe eq; if e is
unblocked, traverse e; and reach t. However, if e; is blocked, then traverse

eo back to s and reach t by traversing e;. The expected cost of 75 is

1+ (1 —p(e1)) + pler)(1 + 10)

Other policies in which the agent traverses ey back and forth regardless
of whether eq is unblocked, are clearly not optimal. This example is a simple
case of the CTP on disjoint path graphs, discussed in Section [2.5] In this

example m; is optimal if and only if

10 <1+ (1= p(er)) + pler) (1 +10)

that is if and only if p(e;) > 0.8.

Since the size of an optimal policy is potentially exponential in the size

7



2. Background

of the problem description, we state that the objective in the CTP is finding
the first move in an optimal policy. The CTP can also be stated as the CTP
decision problem stated as follows. Given an instance of the CTP, and an
edge e incident on s, does there exist an optimal policy where traversing e is
the first move?

The Canadian Traveler Problem is essentially a problem of sequential
decision making under uncertainty. Therefore we next give definitions of
models for decision making under uncertainty, followed by the description of
the CTP as such a model.

2.3 Decision making under uncertainty

We repeat the definitions of Markov Decision Process (MDP), and Partially
Observable Markov Decision Process (POMDP) [36, [19] [1]. We then give the
definition of Deterministic-POMDP (Det-POMDP), which is a special case
of POMDP [26, [§].

2.3.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a specification of a sequential deci-
sion problem for a fully observable environment with a Markovian transition
model, and additive rewards. Formally, an MDP M is a tuple (S, A, T, R)
defined as follows. S is a (finite) set of configurations of the environment
called states. A is a (finite) set of actions, which can be performed at vari-
ous states. T: S x A x S — [0, 1] is the transition function, where T'(s, a, s")
is the probability of reaching state s’ if action a is performed in state s. We
assume that the transitions are Markovian, in the sense that the probability
of reaching s’ from s depends only on s and a, and not on a history of ear-
lier states. Finally, R : S x A x S — R is called a reward function, where
R(s,a,s’) is the reward obtained when reaching state s’ from state s by per-
forming action a. Note that this reward can be either negative or positive,
but must be bounded. The initial state of the environment is denoted by sq.

A solution to an MDP, called a policy, is a function 7 : S — A, which

8



2.3. Decision making under uncertainty

is a specification of what action the agent should perform in every possible
state. We call the sequence of states derived by actions performed so far an
environment history of the policy. The value of a policy 7 is measured by
the expected utility over the possible environment histories generated by ,
starting from sg. An optimal policy 7, is a policy that yields the highest
expected utility. Sometimes the reward function is a negative cost function,
and then an optimal policy is defined to be a policy that yields the lowest
expected cost, called the optimal cost.

For an MDP M, we define a horizon as the number of time steps until M
terminates, where every action performed by the agent can be considered as
a time step. If the horizon is bounded, we say M is a finite horizon MDP. In
a finite horizon MDP, the optimal action in a given state is time dependent.
If, on the other hand, the horizon of M is unbounded, M is called an infinite
horizon MDP. In an infinite horizon MDP, there is no reason to act differently
in the same state at different times. Hence the optimal action in every given
state depends only on the current state.

A special case of an infinite horizon MDP is where every optimal policy
terminates after a finite number of states with probability 1, but the number
of steps until termination is uncertain, and unbounded [I]. Such MDP is
called an indefinite horizon MDP. In an indefinite horizon MDP, terminal
states are defined. A set of terminal states is a subset K C S in which for
every k € K, and a € A, we have T'(k,a,k) = 1, and R(k,a,k) = 0. The

Canadian Traveler Problem is a special case of an indefinite horizon MDP.

Given a policy m, the utility of a state sequence [sq, 1, -] is
U™([s0, 81, +]) = D" R(se, m(s1), Se41) (2.1)
t=0

where v € [0,1]. This utility is called discounted reward and has a dis-
count factor ~. For v = 1 the utility is called additive (undiscounted) reward.
Then given a policy 7 for an MDP, The utility for every state, denoted by

U™(s), can be computed by using the Bellman equation [4], and we have:

U™(s) = 3 (T(s,(s), ) (Rs,m(s), s') + 1U(s))) (2.2)

S/



2. Background

The utilities of the states are assigned iteratively, and are updated until
they finally converge to a unique solution, V™(s), for every state. The ex-
pected cost of 7 is defined to be V7 (sp), and is denoted by C(m). Then a
policy 7* for an MDP M is an optimal policy if and only if C(7*) > C(x)
for every policy 7 for M. In case of a cost function, 7* is optimal if and only
if C(r*) < C(n) for every policy 7 for M.

When computing the utility of a state, or of a state sequence, the discount
factor is usually 1 in a finite horizon MDP, and less than 1 in an infinite
horizon MDP - so the utility computations in Equations , and
converge. However, in an indefinite horizon MDP, the discount factor can
be 1, as we are interested only in policies that terminate after a finite time;

thus the utility computations converge.

2.3.2 Partially Observable Markov Decision Process
(POMDP)

In MDP we assume that the environment is fully observable; that is - the
agent always knows the state of the environment. Combined with the Marko-
vian assumption, an optimal policy depends only on the current configuration
of the environment. However, when the environment is partially observable,
the agent does not necessarily know the state of the environment; therefore

a different type of model is needed.

A Partially Observable Markov Decision Process (POMDP) | is a spec-
ification of a sequential decision problem, much like MDP, with several ad-
ditions. Formally a POMDP is a tuple M = (S, A, T, R, Z,0,by), where
(S, A, T, R) is an MDP called the underlying MDP of M. In addition, Z is a
(finite) set of elements called observations, with an observation distribution
function O : S x A x Z — [0,1] such that O(s,a,0) is the probability of
receiving observation o when the state s is reached after performing action
a.

By receiving observations after performing an action, the agent obtains

some knowledge about the true state of the environment. This knowledge is

10



2.3. Decision making under uncertainty

represented as a belief state, which is a probability distribution over the set
of states S. For a belief state b, and a state s, b(s) represents the probability
that the environment is in state s. The initial belief state is denoted by by.
The belief state space of M is denoted by Bj;. As the agent does not know
the exact state of the environment, he must perform actions based on his

current belief state of the environment.

Let p(o|a,b) be the probability of receiving observation o, once action a

was performed in belief state b. Then

plola,t) = 3 (0(s',a,0) - (T(s,a,5)b(s))) (2.3)

s'eS seS

Given a belief state b, and an observation o received after performing

(o}
a )

If p(ola,b) = 0, then b2(s’") = 0. Otherwise for every state ¢,

action a, the new belief state, denoted by 02 , can be computed as follows.

1
bo(s") = ———=0(',a,0) T(s,a,s)b(s) (2.4)
pola.D 2| )
Note that 0 is a probability distribution over S, and therefore is a belief

state as well.

It is important to note that in an optimal policy for a POMDP M, the
optimal action depends only on the agent’s current belief state [36]. Hence
an optimal policy can be described as 7 : By; — A, and the process can be
specified as a new MDP N, called the belief-state MDP of M, by using By,
as the state space for N. The initial state for N is therefore by. Thus we
see that solving a POMDP can be reduced to solving an MDP; the utility
of a policy 7 at a given belief state b is V™ (b), and the cost of m, C(7),
is V™ (by). However, as By, is a set of probability distributions over S, the
state space of N can be significantly large, hence MDP algorithms are not
efficient on POMDPs. The problem of solving POMDPs, and even finding
approximately optimal policies, is intractable in the size of the POMDP.

11



2. Background

2.3.3 Deterministic-POMDP

A special case of POMDP, called Deterministic POMDP (Det-POMDP),
is when the actions and the observations of the POMDP model are both
deterministic. First introduced by Littman [26], Det-POMDP captures many
important problems, one of which is the CTP. The following formal definition
of Det-POMDP is due to Bonet [§].

A Deterministic POMDP is a POMDP M = (S, A, T, R, Z,0,by) with

the following restrictions.

1. The transition function 7' is deterministic. That is, there is a unique
state that is reached after an action a is performed in a state s. For-
mally, for every state s, and action a, there is a state s’ such that
T(s,a,s") =1

2. The observation function O is deterministic. That is, there is a unique
observation that is received after reaching a state s by performing action
a. Formally, for every state s, and an action a, there is an observation
o such that O(s,a,0) = 1.

3. M has an indefinite horizon. The set of terminal states of M is denoted
by K.

In a Det-POMDP a cost function is used instead of a reward function.
Note that as the actions and observations in Det-POMDP are deterministic,
the only source of uncertainty in Det-POMDPs comes from the initial belief
state. However, the belief-state MDP representation of a Det-POMDP is no

longer deterministic.

For a belief state b, and an action a, we define a distribution b,, called an

intermediate belief state such that for every s’ € S,

ba(s') = T(s,a,s)b(s) (2.5)

ses
No actions are preformed in intermediate belief states as they are changed
when observations are received. As the observations are deterministic as well,

then for a state s and an observation o € Z, we have:

12



2.3. Decision making under uncertainty

0, if p(ola,b) =0 or O(s,a,0) = 0;

ba(s)
p(ola,b)’

b (s) = (2.6)

otherwise.

Let sup(b) be the support of a belief state b, meaning sup(b) = {s €
S |b(s) > 0}. We denote the set of actions that the agent can perform in
state s by A, C A. For a belief state b we define A, = Nsesupp) As as the set
of actions that can be performed in belief state b.

We say a belief state O’ is reachable from a belief state b if b’ is reached
from a consecutive series of actions and observation that starts at b. We say
b’ is reachable from a set of belief states By if there is a belief state b € B;
such that ¢’ is reachable from b. We say b’ is reachable in a policy m from
b, if b’ is reachable from b through a series of actions and observation that
starts at b, in which every belief state is reached after performing an action
in 7, and receiving a certain observation. We denote by By (b) the set of
belief states in B); that are reachable from a belief state b by performing
only actions from A. Similarly, we denote the set of belief states that are
reachable in a policy 7 from the belief state b, by By (b, 7). We denote a
partial order <, on Bjs(by, 7) such that ' <, biff ' € By, (b, ), that is i’ is
reachable from b in 7. Finally, we say belief states b, b’ are separated in 7 if
b£: b and VY £, b.

2.3.4 Weighted AND/OR Trees

A Weighted AND/OR tree (W-AND/OR tree) is a weighted directed tree
T=(V,E,c,p,r) . V isset of nodes in T, and E CV x V is a set of arcs in

T[l In addition we have the following notations.

1. V = Vanp U Vg, where Vayp (called AND-nodes), and Vpg (called
OR-nodes) are finite, and disjoint sets of nodes. r € Vpg is the root
of T.

2. E = Exnp U Egr where Eanp € (Vanp X Vogr) (called AND-arcs),

Note that the graph elements in the CTP graph are called ”vertices” and ”edges”.

13



2. Background

and a For C (Vor x Vanp) (called OR-arcs) are finite, and disjoint,

sets of arcs.
3. c¢is a non-negative cost function defined over the OR-arcs.

4. p is a probability function defined over the AND-arcs, such that for

every n € Vanp we have:

> plnn) =1
(n,n’)GEAND
Note that this definition of W-AND/OR trees resembles Expectimax

trees, in which the AN D nodes are called chance nodes; see [30].

A Det-POMDP M = (S, A, T, R, Z,0,by) can be described as a labeled
W-AND/OR tree Ty, = (V,E,¢,p,r, L), such that (V,E,c,p,r) is a W-
AND/OR tree and L is a label function from V' to By, and from E to
AU Z as follows. L(v) € By, for every node v, L(e) € A for every OR-arc e,
and L(e) € Z for every AND-arc e. Ty, is constructed as follows:

[ ] L(T) = bo.

e If v € Vg then the outgoing arcs of v are OR-arcs stated as follows.

For every action a € Aj, where b = L(v), there is a single outgoing
OR-arc e = (v,v’), such that v € Vanp, L(e) = a, and L(v') = b,.

The OR-arcs are also called action-arcs, or arcs for action a when

specifically related to an action a. We set

c((v,0) = > b(i)R(i,a,)T(i, a,7) (2.7)

iii'es
e If v € Vynp then the outgoing arcs of v are AND-arcs stated as follows.
For every observation o that can be received at L(v) = b,, there is a
single outgoing AND-arc e = (v,v'), such that v' € Vg, L(e) = o,
and L(v") = b%. The AND-arcs are also called observation arcs, or arcs

for observation o when specifically related to an observation o. We set

p(e) = p(ofa, b).
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2.3. Decision making under uncertainty

Next, we define the policy tree T, for a policy 7 for M. A subtree T, of
Ty describes a policy 7 for M if:

e rcf,.
e If n € T, is an AND node, then all the outgoing arcs of n are in T.

e If n € T is an OR node, then exactly one of the outgoing arcs of n is
in T,.. If L(n) = b then the outgoing arc of n is an arc for the action

7(b).

As the sets of observations and actions are finite, we have that T} is well
defined. All the policies throughout this work terminate after finite time;
therefore T}, is considered finite ] We now describe the expected cost C/(r)

of m. For every node v in T, V™ (v) is defined recursively as follows:

0, if v is a leaf
V() = 4 S wwes@((v, u)V™ (1)), if ve Vanp (2.8)
c((v,u)) + V™(u), ifveVogr

Then C(m) = V7 (r).

Finally, we provide a formal definition to a ”partial policy”. Recall
that T'(v) is the subtree of 7" with a root v. For a Det-POMDP M =
(S,A,T,R,Z,0,by) and b € By, let M, be the Det-POMDP (S, A, T, R, Z, 0, ).
Note that M, is indeed a Det-POMDP, B, = By (b), and if L(v) = b then
Ty, = T(v). Now assume that b € By(by, m) for a given policy 7 for M.
Then By (b, ) C Byy,, and T (v) describes a policy m, for M,. , is called a
partial policy of M. From Equation (2.8), we have that C(m,) = V™ (v).

Although two distinct nodes v, v’ can be labeled by the same belief state
b, it follows by construction that T'(v) and T'(v") are identical, as well as Ty (v)
and T (v'); therefore V7™ (v) = V™ (v'). For this reason, and as T is finite, we

may assume that if u,v € Ty, and v is a descendant of v then L(u) # L(v).

2Policies in the CTP that do not terminate are clearly not optimal.
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2. Background

Claim 2.3.1 If 7 s an optimal policy for a Det-POMDP M, and b €
By (bo, m), then ) is an optimal policy for M,.

The proof of claim follows easily from Equation 2.8] In Appendix [A]
we give a detailed proof in which we use backward induction along the trunk
of a vertex v € T, with L(v) = b. This technical method appears in several
proofs throughout this work; we refer the reader to this proof for the exact

technical details.

2.4 Det-POMDP definition for the CTP

Given a CTP instance I, we define the following Det-POMDP M; = (S, A, T, R, Z, 0, by)

as follows:

e The set of states S is defined to be V X [[eep{blocked, unblocked}. For
every edge e, Y, : S — {blocked, unblocked} is a function in which Y, (1)
denotes the status of edge e in state [. If Y.(I) = blocked (respectively
Y.(l) = unblocked), we say that e is blocked (respectively unblocked)
in [. In addition, loc : S — {v1, -+ ,v,} is a function in which loc(])
denotes the location of the agent in state . If loc(l) = v, we say that
the agent is at verter v in state [. A terminal state, henceforth called a

goal state, is defined to be any state in which the agent is at vertex t.

e For each edge e € FE, we define an action Move(e). Given states
[,I!, and an action a = Mowve(e), where e = (v,w), we define the
transition function, T, as follows. T'(l,a,l’) = 1 if e is unblocked at [,
Yo (1) = Yo (l') for every edge € € E, and in addition loc(l) = v and
loc(lI') = w. Otherwise T'(l,a,l') = 0.

e Given states [,I’, and an action a = Move(e) for some e € E, let

R(l,a,l') = w(e) in all cases where T'(I,a,l') = 1, and 0 otherwise.

e The set of observations Z is a set of subsets of {(e,i) | e € E,i €

{blocked,unblocked}}. For a state [, a move action a, and an observa-
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2.4. Det-POMDP definition for the CTP

tion o, the observation distribution O(l, a,0) is :

1, ifloc(l) =v, and o = {(e,i) |e € E,,i = Y.(I)}
O(l,a,0) =
0, otherwise.

e The initial belief state, by, is defined as follows. If loc(l) # s then
bo(l) = 0. Otherwise, let E, = {e € E|Y,(l) =0} and E,, = {e €
E|Y.(l) =1}. Then

bo(l) = I p(e) IT (1 —p(e)) (2.9)
c€E, e€Ey,

We abuse notation by denoting the elements of a Det-POMDP M, for a
CTP instance I, as elements of I. For example, we denote the belief state
space of M by B; rather than Byy,.

An edge e is blocked (respectively unblocked) in a belief state b if e is
blocked (respectively unblocked) in [ for every state [ € sup(b). An edge that
is neither blocked nor unblocked in b is unknown in b. Likewise, we say the
agent is located in v in b if loc(l) = v for every state [ € sup(b). We define
a partial function Loc : By — V such that Loc(b) = v when the agent is
located in v in b. If Loc(b) =t then b € By is called a terminal belief state.
As a terminal belief state is reached after performing an action, we have that
all terminal belief states are intermediate belief states. Therefore, if T} is
a policy tree for a policy 7 for I, then the leaves of T} are all AND-nodes.
Unless mentioned otherwise, the edges incident on s are unblocked in every
CTP instance.

For example, Figure describes a Det-POMDP representation for the
CTP instance [ in Figure , in a form of a Weighted And/OR Tree. The
square nodes are OR-nodes, the round nodes are AN D-nodes. Every ter-
minal belief state (in which the agent is for certain in ¢) is in bold. Two
actions are allowed at the initial belief state by: move(eg) and move(es). If
the action move(eg) is performed, for a cost of w(eg), then two observations

are obtained: o1: "e; is unblocked”, and o9: "‘e; is blocked”. o is obtained
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2. Background

with probability 1 — p(e;), and oy with probability p(e;), and so on. Figure
describes the following policy for I: traverse ey and observe es; if e; is
unblocked, traverse e; and reach t. However, if e; is blocked, then traverse

eg back to s and then reach t by traversing e,.

move(eo) move(ez)

Figure 2.2: A Det-POMDP representation of the CTP instance in Figure
2.1] The square nodes are OR-nodes, the round nodes are AND-nodes.

Note that every state includes the specific location of the agent and the
exact status of each edge. Therefore the size of the state-space of the CTP

is at most V x 21EI.

Alternative representations for belief states of the CTP. The status
(blocked,unblocked,unknown) of an edge e in b is denoted by b|e and is called
the belief status of e. Given the status of the edges at a belief state b, we can
compute b(l), for a state [, as follows. b(l) = 0 if at least one of the following
holds:
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2.4. Det-POMDP definition for the CTP

Figure 2.3: A policy description for the CTP instance I.

e loc(l) # Loc(b).
e ble = blocked, and Y, (I) = unblocked.
e ble = unblocked, and Y,(l) = blocked.

Otherwise, let E; = {e € E | ble = unknown and Y,(l) = blocked}, and
Ey = {e € E'| ble = unknown and Y,(l) = unblocked}. Then we have

b(1) = 11 ple) IT (1 = p(e)) (2.10)

ecEq eckEs

Note that Equation [2.9)is a special case of Equation [2.10]

Lemma 2.4.1 Let I be a CTP instance, and let b,b' € By be belief states
such that Loc(b) = Loc(b'). Suppose that ble = b'|e for every edge e € E.
Then b=1.

Proof: Let b,/ € By where Loc(b) = Loc(l'). Then from equation
2.10, b(l) = /(1) for every state [ in which loc(l) = Loc(b), and otherwise
b(l) = b'(l) = 0. Therefore b =1V'.

O
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Using Lemma [2.4.1] we can now uniquely describe every belief state b as
a tuple of size |F| 4+ 1, which contains the belief status of every edge, plus
Loc(b). This tuple is henceforth called the variables-status representation of
a belief state. Therefore the size of the belief state space is at most V' x 317,
As the status of every edge remains unchanged, once its status is revealed,

we make the following claim:

Claim 2.4.2 Let © be an optimal policy, with OR-nodes z1,zy € T}, such
that z1 A z3 and zo A z1. Let by = L(z1) and by = L(z3). Then by # bs.

Proof: Let z € T, be the splitting node for 21, z5 (note that z must be an
AND-node). Denote L(z) by b, for a belief state b and an action a. Therefore
there are observations o; # 0y received in b,, for which b, is reachable in 7
from b2', and b, is reachable in 7 from b2; see Figure 2.4 As o0y # o0y, there
is an edge e € Ercp,) for which e is blocked in o0; and is unblocked in o0p. As

the status of e remains unchanged, we have that b|e # by|e, which implies

from Lemma that by # bs.
a

Figure 2.4: As 01 # 0, we have that b; and by do not have the same variables-
status representation.

The status of the edges at a belief state b can also define a blocking

probability function p, over the set of edges as follows. If an edge e is blocked
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2.4. Det-POMDP definition for the CTP

in b, then py(e) = 1. If e is unblocked in b, then p,(e) = 0. If e is unknown
in b, then py(e) = p(e). For the initial belief state by we have py,(e) = p(e)
for every e € E. Therefore for a CTP I = (G, s,t,p,w), every belief state b
admits a CTP instance [, = (G, Loc(b), t, py, w) in which the graph layout of
I and [, is the same, and the only difference is in the location of the agent

and the blocking probability function.

Weather configuration of CTP . A macro-action is defined as a con-
ditional sequence of actions that the agent can perform. Following [12], a
possible status description (blocked or unblocked) of the entire set of edges,
is called a weather. Denote the set of all possible weathers by W, and the
probability that weather w occurs by p,. Therefore by defining C(m,w) to

be the cost of 7 given a specific weather w, we can compute C(7) as follows.

C(m) = > puC(m, w) (2.11)

weWw

This alternative description of the cost of a policy is used throughout this

work.

Another important observation made by [12] is as follows. We say a
vertex v is explored in a belief state b if E,, the incident edges on v, are all
known in b. Note that the only uncertainty in the status of the edges is in the
edges that are incident on vertices that are not yet explored. The explored-
neighborhood of b, denoted by Nex(b), is the set of all vertices u that have
the following property. There is an unblocked path in b from s to u, in which
all the vertices apart from u, are explored in b. Note that u itself can remain
unexplored. The fringe of b, denoted by 9(b), is defined to be the set of all

non-explored vertices in Nex(b).

Therefore every optimal policy for the CTP can be defined as a set of
macro-actions; each is defined as follows. At every belief state b with Loc(b) =
v, a macro-action Traverse(u) for u € 9(b), is a consecutive series of actions
Mowve(e) along the shortest unblocked path {v, vy, ,v;}, where v; = u, in
which v; € Nex(b)\0(b) for every i < [. See Figure [2.5] for an example.
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Figure 2.5: A CTP instance I in a belief state b for M;. Edges with label u are
unblocked edges in b; edges with label u are blocked edges in b. Unlabeled
edges are unknown edges in b. Then Nex(b) is {s, vy, vy, v4,v6}. O(b) is
{v4,v6}. Assume Loc(b) = vy, then the possible macro actions at b are
Traverse(vy), and Traverse(vg).

Default path As throughout this work we are interested in the expected
travel cost, we face a problem of defining the objective when all the paths
from s to t are found blocked. Namely, the expected travel cost can be infi-
nite. This problem can be handled through one of the following approaches.
First, we can assume that every instance has an unblocked traversable path,
called the default path, from s to t, usually with a very large cost. This
default path is traversed if and only if all other paths from s to ¢ are found
blocked. This approach can be thought of as a rescue choice, such as a call
for a helicopter, that the agent must take if no regular path to the goal ex-
ists. A second approach is to assume that such a large cost default path
exists from every vertex to target. Note, however, that these two approaches
yield totally different optimal policies, as in the first approach one has to
keep in mind the cost of retracing to the source vertex before traversing the
default path. A third approach is to consider only instances in which such
an unblocked path from the source to the target exists. Unless mentioned

otherwise, we use the first approach.
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2.5. CTP in a disjoint paths graphs

2.5 CTP in a disjoint paths graphs

We follow the work of [6], and show a polynomial time solution for the
Canadian Traveler Problem on disjoint paths graphs (CTP-DISJ). Although
this variant is a limited case of multi-agent CTP on disjoint path graph (see
Section, it is important to be familiar with CTP-DISJ at this stage, since
the solution for CTP-DISJ underlies many results presented throughout this
work. A detailed proof for the main theorem in this section, Theorem [2.5.3]
can be found in Section [6.2

A CTP-DISJ instance is a CTP with a graph constructed from k£ > 1
paths, denoted by Iy, -+, I_1 (see Figure. Apart from s and ¢, in which
all the paths meet, all the paths are vertex-disjoint. We assume w.l.o.g.
that at least one path is known to be traversable. Otherwise, we can add a
traversable default path consisting of a single unblocked edge between s and
t with a finite, but very large, cost, which is traversed if and only if all other
paths are blocked.

The length r; of each path I; is the number of the edges of I;. The edges
of path I; starting from s are denoted by e; ; for 0 < j <r;.

For a path I;, and an edge e;;, let W;; = 37;; w(e;;) be the cost of the
path I; up to edge e; ; not including e; ;. Let W; = W, ,. be the cost of the
entire path I;. Define ); to be the probability of path I; being unblocked;
(thus @; = [li<r, q(€i1), where g(e;;) = 1 —p(e;y)), and let P, =1 — @Q; be
the probability that I; is blocked.

€0,0 : 1’0 Vo €0,1 : O5|095

€11 - 15|005

2

€20 1 10000(0

Figure 2.6: CTP with disjoint path graph.

We define two macro-actions, through which all optimal policies on disjoint-

23



2. Background

paths graphs can be specified. Both macro actions are defined for an agent

situated at s.

Definition 2.5.1 For a path I;, macro action TRY (i) is to move forward
along I; until reaching t; if a blocked edge is encountered, the agent returns
along the path and stops at s. An agent performing a TRY action on a path
1$ said to be trying the path.

Definition 2.5.2 For a path I; and an edge e;;, macro-action INV (i, j)
(meaning investigate) is to move forward along I; until reaching (without
crossing) e;;, or a blocked edge, whichever occurs first. In either case the

agent returns to s.

For a path I;, denote by BC(i) the random variable representing the
backtracking cost of I;: that is, the cost of traversing I;, finding I; blocked,
and returning to s. Since I; can be blocked anywhere, and the cost to reach

edge e; ; is W, ;, the expected backtracking cost is:

E[BC(@)] =2 Wijplei;) [T alein) (2.12)

j<7‘i l<j

Denote the expected cost of TRY (i) by E[T'RY (7)]. Then
E[TRY (1)] = Q:W, + E[BC(3)] (2.13)

A policy that consists only of TRY actions, but never uses I NV actions
(that is, only backtracks if a blocked edge is revealed), is called committing.
In Chapter 4] we see a generalization of this definition of commitments in the
CTP.

Since a T'RY macro action either reaches t or finds a path blocked, it
never makes sense to try the same path more than once, and thus all such
committing policies can be represented by an order of paths to be tried. Let

M be an instance of CTP-DISJ, and let 7}, be a committing policy for M in
E[TRY ()]
o

7

which the agent tries the paths in a non-decreasing order of D; =
Assume without loss of generality that the D, are all different, and thus 77},

is unique. Then the following theorem [6] holds:
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2.5. CTP in a disjoint paths graphs

Theorem 2.5.3 7, is an optimal policy for M.

Proof outline:

We first show that 7}, is optimal among all committing policies for M.
As every committing policy is a permutation of T'RY actions, we see that
given two committing policies, 7 and 7’ for M, such that 7’ is obtained from
7 by switching TRY (i) with TRY (i + 1), then C(7) < C(x’) if and only if
D; < Djiq.

Next, let v* be an optimal, but not committing policy, for M. We assume
w.l.o.g. that v* is an optimal policy with a minimal number of I NV -edges
in T,~ among all the optimal policies for M. We can then show that T,
contains a subtree, T', with only one I NV-edge, and define a policy v/ that is
obtained from v* by replacing T with another tree, T”, which has no INV-
edges at all. We then show that C(v') < C(v*), contradicting the minimal
number of I NV-edges in T,- among the optimal policies of M. O
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Chapter 3

Complexity of the Canadian

Traveler Problem

3.1 The CTP is PSPACE-complete

When originally introduced in [31], two variants of the CTP were examined:
the adversarial variant and the stochastic variant. Both variants were shown
to be in PSPACE. The adversarial variant was shown to be PSPACE-hard by
reduction from QBF. For the stochastic version only #P-hardness was estab-
lished by reduction from the st-reliability problem (as stated in [31]), leaving
the question of PSPACE-hardness open. Apparently proving the stronger re-
sult requires some form of dependency between the edges, achieved “through
the back door” in the adversarial variant. This chapter, published in [14],
settles the question, showing that the CTP is indeed PSPACE-complete. In
fact we show that it is PSPACE-hard to solve the CTP decision problem,
stated as follows: Given an instance of the CTP, and an edge e incident on
s, does there exist an optimal policy where traversing e is the first move?
Membership of this problem in PSPACE was shown in [31], by the general
argument that the CTP is a “game against nature” for which PSPACE al-
gorithms exist. A more detailed argument appears in [14].

We begin with a preliminary known variant, of CTP with dependent
directed edges, CTP-Dep, which allows for a simple proof (first shown in
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[14]) of PSPACE-hardness by reduction from QBF. Then, we proceed with
a PSPACE-hardness proof for the “standard” stochastic CTP. Although the
latter result subsumes the PSPACE-hardness of CTP-Dep, proving the de-
pendent CTP result first greatly simplifies the intuition behind the proof of

the standard case.

3.2 Dependent directed CTP is PSPACE-hard

The dependent CTP is a generalization of the CTP where edge blocking
probabilities can be dependent. Therefore, instead of the function p in the
definition of the CTP, we have a general probability distribution in the depen-
dent version. In order to make the reduction simpler, we define the problem

over a directed graph.

Formally, the dependent CTP (called CTP-Dep) is a 5-tuple (G, ¢, s,t, BN)
with G = (V, E) a directed graph, a cost function ¢ : E — R2°, s;t € V
are the source and target vertices, respectively, and a distribution model
BN over binary random variables describes the dependency of the blocking
probabilities the edges of F.

As in the CTP, the problem is to find a policy that minimizes the expected
traversal cost from s to t. We assume that BN is specified as a Bayes network
(see [32]) as follows. The Bayes network (Y, A, P) consists of a set of directed
arcs A between a set of binary random variables Y, so that (Y, A) is a directed
acyclic graph. P describes the conditional probability tables, one for each
y € Y. Note that it is sufficient to show that if the in-degree in the Bayes
network graph (Y, A) is bounded by a constant, then the size of an explicit
representation of a Bayes network, as well as the time to generate it, are low-
order polynomial in the number of random variables. The bounded in-degree

is guaranteed by construction in the proof below.

Theorem 3.2.1 Determining whether there exists an optimal policy for the
CTP-Dep in which a given action is the first move is PSPACE-hard.
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Proof. We prove Theorem by reduction from the PSPACE-complete
problem QBF [16]. Recall that QBF is the language of all true quanti-
fied Boolean formulas in prenex normal form, ® = Va13zs...o(x1, o, ..., 2,),
where ¢ is a Boolean formula in conjunctive normal form, with n variables
and m clauses. Every clause contains literals, each consisting of either a
variable or a negated variable. We assume that each clause has at most 3
literals (see [16]). Given a QBF instance ®, construct a CTP-Dep instance
(Go,c,s,t, BN) as follows (see Figure[3.1)). G consists of a variables section,
and an ezam section. Vertices in the variables section have labels starting
with v or o, and vertices of the exam section begin with r. An always un-
blocked edge (s, t), called the default edge, has a cost of h > 0 defined below
(in Claim . All other edges, unless mentioned otherwise, are zero-cost
edges known to be unblocked. In some cases, the only role such edges have
in the proof is to simplify the notation or the physical layout of the figure,

such as the edges (s,v1) and (v/,,79).

Va:l 3-'172

011 012 O1m 021 022 02m

’ V2my ’U/2

62m

O1m, 021 022 02m,

variables section

exam section

Figure 3.1: Reduction from QBF to CTP-Dep. Note that vertex ¢ appears
twice in order to simplify the physical layout.

The variables section contains a subsection X; for every variable x;, which
begins at v; and ends at v]. For every i < n, X; is connected to X;; through
an edge (1), vj11).

/
7

Every X contains a true-path (v;, vi1, -+, Vim, v

29

), and a false-path (v, v;1, - - -

71_)imuv

%

).
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If z; is a universal variable (resp. existential variable), the edges (v;, v;1), and
(v;, ;1) are called universal edges (resp. existential edges). While the existen-
tial edges are always unblocked, we set the universal edges to have blocking
probability 1/2 and to be mutually exclusive: for each universal variable x;,
exactly one of (v;, v;1), and (v;, ;1) is blocked.

In addition, for every 1 <i < n and 1 <[ < m, there are edges (0, vi)
and (04, 0y) called observation edges. These edges are only meant to be
observed, as their source vertices are unreachable. Every observation edge is
blocked with probability 1/2, and the dependency of the observation edges is
defined according to appearance of variables in the clauses of ®, as follows:
an observation edge (0;;,vy) (resp. (05, 7;)) is considered “in” a clause Cj if
x; appears unnegated (resp. negated) in clause C;. All observation edges that
are “in” the same clause C; co-occur: they are either all blocked or all are
unblocked (with probability 1/2, as stated above), independent of all other
edges that are not “in” Cj.

The exam section consists of an odd-path (ro,r1,7),t), and an even-path
(ro,r2,75,t). In addition construct edges (r1,t) and (rq,t) with cost 1. The
edges (r1,7r]) and (rq,7h) are called choice edges. The edge (r1,7]) (resp.
(re,7%)) is unblocked if and only if the observation edges are unblocked for
an odd (resp. even) number of clauses. Hence exactly one of the choice edges
is blocked. If at least one observation edge in each clause is observed, the
status of the choice edges can be determined with certainty. Otherwise the
posterior blocking probability of each choice edge remains 1/2. A description
of the layout of the related bayesian network BN appears in Appendix [B.1]

In order to prove the theorem, it is sufficient to prove the following claim:

Claim 3.2.2 If ® is true then there is an optimal policy with an expected
cost 0, and the optimal first action is to traverse (s,vy). If ® is false, then
for every 0 < h < 27371, the optimal policy is to traverse (s,t) with a cost
of h.

Proof: Suppose first that ® is true. Then there is a policy for assigning
values to every existential variable x;, each given every assignment to the

universal variables enclosing x;, such that ¢ is true. Following this policy for
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each existential variable x;, i.e., traversing edge (v;,v;1) if x; should be true,
and (v;, v;1) otherwise, leads (by construction) to following a path such that
at least one observation edge is seen in every clause. Hence, the “exam” is
passed (i.e., the zero-cost unblocked path in the exam section is chosen) with
certainty.

Next, suppose ® is false. Then there exists an “adversary” policy of
assigning the universal variables for every assignment of the enclosing exis-
tential variables, in which eventually, some clause C is false. (as above, such
an adversary policy may only depend on the values of existential variables
enclosing the current universal variable). In that case no edge “in” clause
() is observed. Since every assignment of the universal variables occurs with
probability 272 (assuming w.l.o.g. that n is even), in these cases the exam is
“flunked” (picking the path where only the expensive edge is unblocked) with
probability 1/2, and thus the total expected cost of starting with (s,v;) is
at least 272!, Hence, with 0 < h < 2727, the optimal policy is to traverse
(s,t) if and only if ¢ false.

O

Observe that the proof of Theorem also shows the following:

Corollary 3.2.3 [t is PSPACE-hard to determine the expected cost of the
optimal policy in the CTP-Dep.

3.3 Complexity of the CTP

Having shown that the CTP-Dep is PSPACE-hard, we extend the proof to
the “standard” stochastic independent undirected edges CTP.

Theorem 3.3.1 The CTP decision problem is PSPACE-complete.

In order to prove Theorem [3.3.1] we use the same general outline of the
reduction from QBF as in the proof of Theorem However, in the CTP-

Dep, dependencies and directed edges restrict the available choices, thereby

simplifying the proof. Here we introduce special gadgets that limit choice de
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facto, and show that any deviation from these limitations is necessarily sub-
optimal. Policies that obey these limitations are called reasonable policies.
Each such gadget g has an entry terminal Entry(g), and an ezit terminal
Exit(g); an attempt to traverse g from Entry(g) to Exit(g) is henceforth
called to cross g. The gadgets operate by allowing a potential shortcut to the
target ¢; crossing these gadgets may either end up at t, or at Exit(g), with
some probability ¢(g). The unblocked edges that allow direct access to t are
called shortcut edges. The following invariant follows from the construction
of the CTP graph in Section [3.3.3] and is used throughout the proof of
Theorem [3.3.11

Invariant 3.3.2 FEvery gadget g is attached to any other graph component
such that any partially specified policy executed at Entry(g), in which g is

not crossed, has an expected cost of at least 1.

We introduce the gadgets in Sections[3.3.1]and [3.3.2] and the CTP graph
construction in Section |3.3.3} The actual proof of Theorem [3.3.1]is in Section
In the description of the gadgets and the CTP graph, we sometimes
add zero-cost always traversable edges. These edges, which appear unlabeled
in Figures[3.2] [3.3] and were added solely in order to simplify the physical

layout as a figure; any u, v connected by such an edge can be considered to

be the same vertex.

3.3.1 Baiting gadgets

A baiting gadget g = BG(u,v) with a parameter [ > 1 is a three-terminal
weighted graph

(see Figure [3.2): an entry terminal u = Entry(g), an exit terminal v =
Exit(g), and a shortcut terminal which is always t. The latter terminal is
henceforth omitted in external reference to g, for conciseness.

The baiting gadget consists of N + 1 uniform sections of an undirected
always unblocked path (u, vy, -+ ,vy,v) with total cost [. Each intermediate
vertex has a zero-cost shortcut to ¢t with a blocking probability 1/2. In

addition, there is a shortcut edge with cost [ from the terminals u, v to t. Set
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N = 2Mloe28)1 _ 1 Then the size of g is O(1).

As the formal description of a policy is cumbersome, we informally de-
scribe the following policy as a conditional sequence of actions, with condi-
tions being previous locations, actions, and observations.

Let 7 be the following partially specified policy: when at u for the first
time, proceed along the path (u, vy, --- ,vN,v) to v, taking the zero-cost short-
cut to t whenever possible, but never backtracking to w. From v continue with
any optimal policy. This description of 7 has an obvious formal interpreta-
tion, which we write out as an example in Appendix [B.2]

When at u for the first time, the expected cost of reaching ¢ by executing
7 is less than 1, even if we need to take the shortcut edge (v,t) (proved in
Appendix . As the shortcut edge (v,t) costs [, the expected cost of any
optimal policy once at v is no more than [. After reaching v, all the zero-
cost shortcut edges are blocked; therefore g is not retraced by any reasonable
policy. A similar argument holds for retracing to u from other locations along

the path (u, vy, -+ ,vn,v). Hence we have:

Figure 3.2: A baiting gadget BG(u,v) with a parameter [ > 1. Edge label
¢ | p denotes cost | blocking probability. The optimal policy at u is to cross
the path (u,vq, -+ ,vn,v), taking a shortcut edge to ¢ whenever such an edge
is found unblocked. After reaching v, retracing to u in g costs at least [.

Claim 3.3.3 When at u for the first time, under Invariant[3.5.9, 7 is opti-
mal for a baiting gadget g = BG(u,v) with a parameter | > 1. After reaching

v, it is suboptimal to backtrack to u in g.
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3. Complexity of the Canadian Traveler Problem

Note that ¢ is actually symmetric w.r.t. u,v. However, since by con-
struction of the CTP graph, every reasonable policy always reaches one des-
ignated terminal u first, we treat g externally as if it were directional. A

precise derivation of the parameters of baiting gadgets appears in Appendix

B.2

3.3.2 Observation gadgets

An observation gadget g = OG(u, v, 0), is a four-terminal weighted graph (see
Figure [3.3): an entry terminal u = Entry(g), an exit terminal v = Exit(g),
an observation terminal o, and a shortcut terminal (again omitted in external
references) that is always t. The observation gadget begins with a baiting
gadget BG; = BG(u,v;) with a parameter [ = L (the global value L is
a problem-dependent value defined below for all the observation gadgets),
which is connected to the “observation loop” beginning with a baiting gadget
BGy = BG(vy,v2) with a parameter [ = 3L/2, a zero-cost edge (v2, v3) with
blocking probability 3/4, and a cost 5L/8 unblocked edge (v3,0). A cost
3L/2 unblocked shortcut edge (vq,t) exists as a part of the baiting gadget
BG5. The observation loop is closed by a cost 5L/8 unblocked edge (o, vy)
and a zero-cost edge (v4,v1) with blocking probability 3/4. From vy, a cost 1
unblocked edge (v, v]) followed by a baiting gadget BG3 = BG(v], u) with
a parameter [ = L completes the gadget. Note that as every baiting gadget
is of the size of ©(L), we have that the size of g is ©(L).

We next define the path component to which the observation terminal o
that can be connected, and the path edges incident on o that can be observed.
The exam section path is a path (rqe,r3, 4, 75,71, 75) (0 is identified with r5)
with the following properties: the edges (rq,73), (r],r5), and (r4,75) have
zero cost and blocking probability p;, where p; > 1—2/(3L+1). (rq9,r3) and
(ry,r5) are called guard edges, (r4,75) is called an observation edge. The edges
(rg,r4) and (rs,r}) are always traversable edges with cost 1. The notations
of the exam section path are chosen to match the description of the CTP
graph construction in Section [3.3.3]
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Figure 3.3: An observation gadget OG(u,v,0). Light gray arrows indicate
general traversal direction of the optimal policy 7. BG; and BG5 are baiting
gadgets with a parameter [ = L. BGs is a baiting gadget with a parameter
[ =3LJ2.

Invariant 3.3.4 The observation terminal o 1s either not directly connected
to the rest of the graph, or connected through the exam section path

(ro,r3,r4,75,77,75), in which case o is identified with r5. In addition, o is
allowed to coincide only with observation terminals of other observation gad-

gets.

We see in Section 3.3.3] that Invariant [3.3.4] follows from the construction
of the CTP graph. Let m, be the following partially specified policy for
g: when at u, cross BGy. Then (observing (vi,vs)), cross BGy. If either
(vg,v3) or (v1,v4) is found blocked, reach t by traversing the shortcut edge
(ve,t), which costs 3L/2. Howewver, if both (va,v3) and (vy,vs) are unblocked,
traverse the path (ve, vs, 0,v4,v1,v]) (0bserving any edges incident on o such
as the observation edge (r4,75)), and cross BGs. Then from v continue with

any optimal policy.
Claim 3.3.5 Assume L > 8. Then, when at u for the first time, under
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3. Complexity of the Canadian Traveler Problem

Invariants|3.3.4 and|3.5.4), 7, is an optimal policy for an observation gadget

g = OG(u,v,0).

Proof outline. First observe that following m,, Invariant holds for
every baiting gadget in g. Therefore properties of the baiting gadgets ensure
that ¢ is traversed in the correct order. Next, the guard edges (rq,r3) and
(r},rh) ensure that it is suboptimal to “escape” from o by traversing edges in
the exam section path. The uncertain edges (vy,v1) and (ve, v3) ensure that
it is suboptimal to enter a previously uncrossed observation gadget from o.
Likewise for a previously crossed observation gadget g: entering g through
o is suboptimal because all the baiting gadgets in g have been crossed and

observed to contain no unblocked zero-cost shortcuts.

A detailed derivation of the properties of observation gadgets appears in
Appendix [B.3]

3.3.3 CTP graph construction

Having shown the properties of the baiting and observation gadgets, we are
ready to construct the CTP graph: For a QBF ¢ with n variables and m
clauses, we construct G in the same general outline as the construction of the
CTP-Dep graph (see Section with the following changes (see Figure.
The exam section is a path of 5(m+1) vertices {r} | 1 <i <m+1,1 < j <5},
with an additional vertex ry, as follows. For every 0 < i < m + 1, (ri,r),
(ri, rt), and (i, rl) have zero cost and blocking probability p;, except from
(ri"t 1) which has zero cost and is always traversable. 72" is identical
to t. (ri,ry), and (ri,ri) are called guard edges. The edge (ri,r%) is called
a clause edge, and is denoted by e;. The edges (r5,7%), and (ri,rit!) are
always traversable cost 1 edges. In addition, there is an always traversable
cost 1 edge (rg,71), as well as an always traversable cost L shortcut edge
(ro,t). In order to guarantee correct operation of the observation gadgets,
we disallow reasonable policies to traverse exam edges too early while crossing
the variable section. This is done by visiting the initially uncertain guard

edges only later via a section called the guards section, which consists of
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Figure 3.4: The CTP graph construction for ® = Vry3zy - (Z1 VZ2) A (T1 V
x9)---. BG - a baiting gadget. OG - an observation gadget. Light gray
arrows indicate the general traversal direction of the optimal policy when &
is true.

a sequence of m + 2 baiting gadgets BG(z;, 2i—1), 0 < i < m + 2, with a

parameter [ = L that visits r} from every z; (except from z,, ).

The variables section is constructed as for CTP-Dep, except that the di-
rected edges (v}, v;41) are replaced by baiting gadgets BG(v}, v;11) with a pa-
rameter [ = L. For each universal variable z; the universal edges (v;, v;1), and
(vi,0;1) are cost 1 edges with blocking probability 1/2. For each existential
variable x;, the existential edges (v;,v;1) and (v;, ;1) are always traversable
edges with cost 1. Inside each true-path, every (vij,0i;), (vij, Vi(j+1)) pair is
replaced by an observation gadget g = OG(vij,v;;,045). (vi;, vij41)) are al-
ways unblocked zero-cost edges added for clarity. The observation vertex o;;

is identified with the vertex 7 incident on the appropriate clause edge e; in
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the exam section. That is, if z; appears unnegated in clause j, then o;, of
the true-path is identified with 7’% in the exam section. Likewise respectively
for all the edges in the false-paths. Note that Invariant holds for all
the baiting gadgets, and observation gadgets in G4, and that Invariant
holds for all the observation gadgets in G.

For example, Figuredemonstrates the reduction for ® = Vo 3y - -+ (71V
Zo) A (Zy V x9)---. The variable z; appears negated in clause 2, so in Gg
the vertex 015 at the section X, and the vertex Tg of the exam section are
connected by an unlabeled edge, hence the clause edge e; = (r?,r%) can
be observed from the observation gadget OG (012, 0}y, 012) When traversing
the false path of X;. The connection of other observation gadgets can be

explained similarly.

3.3.4 Proof of Theorem [3.3.1]

Given a QBF ® with n variables and m clauses, we construct G¢ as in Section
Set L =8m+16and p; = 1—2" [1o82*5) ] We show that it is optimal

to traverse (s, ) if and only if ® is true.

Unless stated otherwise, we henceforth consider only reasonable policies
for G that do not begin with the default action of traversing (s,t). Due to
properties of the gadgets (Claims , we have that by following any
reasonable policy for Gg, Invariants [3.3.2] and hold for all baiting and
observation gadgets. Therefore any reasonable policy 7 for G¢ must follow

the restrictions in Table |3.1], as any other action is suboptimal.

Table 3.1: Reasonable policy actions in 7.

Location Action
v, for i <n cross BG(v},v141)
v;, for 1 < n, go to v;1 or Uy
vy, for 1 < n, cross OG(vy, vy, 0i1)
vy for 1 < n, cross OG(vy, Uy, 041)
zi, for 0 < i <m+2 cross BG(z;, zi_1)
To pass exam or take shortcut

Most of these restrictions are immediate consequences of executing opti-
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mal policies at the baiting and observation gadgets (see Appendix and
Appendix for details). The following claim, proved in Appendix ,

shows the actions of any reasonable policy for G¢ at rg.

Claim 3.3.6 At rg, any reasonable policy acts as follows:

o [f all the edges in the exam section were observed to be unblocked, cross

(ro, 71, ,rL t) until reaching t for a cost of 2(m + 1).

o Otherwise, cross the cost L shortcut edge (r¢,t).

Therefore, reasonable policies for G4 differ only in the choices made in
the universal and existential edges, and in the choice at ry, which is either
to traverse the exam section if all clause edges were observed, or otherwise

take the expensive shortcut (rg,?).

Now recall that for every policy 7 for G¢ we have

C(m) = Y puC(m,w) (3.1)

weW
where W is the set of all possible weathers for Gg (see Section[2.5]). Parti-
tion W into full-trip weathers W7 (r), in which ry is reached while executing
7; and shortcut weathers W#(m) in which r¢ is not reached due to taking a

shortcut edge to t before reaching ry. Then:

CwW= 3 mlmut 3wl (3:2)

weWs(m weW ()

Let 77 be a policy for G such that in every subsection X; of the variables

section, whenever possible, the true-path is always chosen. Define:
Dy= Y. p,Cr" w) (3.3)
weWs(xT)
As all the true-paths and false-paths of all the variables section are symmetric

in the number of observation gadgets and other edges, there is a bijection
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gr : We(m) = W#(xT) such that p, = p,, @) and C(m,w) = C(77, g (w)) for

every w € W#*(m). Hence we have:

Z PuC(m,w) = Dy (3.4)
weWs(m)
and therefore
C(r)=Dg+ > puClm,w) (3.5)
weW ()

Again, due to symmetry, and the properties of the baiting and observation
gadgets (Claims , , the total cost from s to rg while executing m
in any weather w € W/ (7) is independent of w. We denote this cost by D,
and can compute it simply by summing the cost of traversing a path from s
to ro through the variables section and guards section, assuming that rq is
reached. More precisely, see that in every weather w € W/(r), every crossed
baiting gadget has a cost of L, and every crossed observation gadget has a
cost of (19L + 4)/4. Then, as the number of crossed observation gadgets is
mn, with an additional n baiting gadgets (v}, v;+1) need to be crossed, as

well as m + 1 baiting gadgets of the guards section, we have that

(19L + 4)m

Dpt:1+<2+ 4

)n—l—(n—l—m—i—l)L (3.6)

Now, according to Claim[3.3.6] the cost of reaching ¢ from ry is either 2(m+1)
(if the exam section is known to be completely unblocked), or L > 2(m + 1)
(taking the shortcut (7o, t), if some edges in the exam section are known to
be blocked, or some such unknown edges remain). Hence for any full-trip
weather w, C(m, w) is either Dy + L, or Dy +2(m + 1).

Let Py = (1 — p1)®™*2 be the probability that all the edges in the exam
section are unblocked. Let P € [0, 1] be the probability that not all the
clause edges of the exam section were observed in a full-trip weather by fol-
lowing 7 (this probability depends on the formula ®). Then, with probability
P,(1 — Pf) all the edges of the exam section were observed and were found

unblocked before reaching ry. Denote by P,, the probability of reaching ry by
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executing 7. Again, due to symmetry of the baiting and observation gadgets,

P,, is independent of 7. We get:

> puClmw) = Pry(Dy+ PEL+ (1= PE)(Pu2(m + 1) + (1 — Po)L) )
weW ()

(3.7)
And therefore

C(m) = Duy + Pry( Dy + PEL+ (1 = PF)(Pu2(m + 1) + (1 = Po)L)) (3.8)

If @ is true, then, as in the proof of Theorem there is a reasonable
policy m which follows the variables assignments that satisfy ®; thus every
clause edge is observed and P§ = 0. Define By = C(m) for such a policy 7

when @ is true. Then

By = Dy + P,y (Dy + Pu2(m + 1) + (1 — By)L) (3.9)

If ® is false, then, again as in the proof of Theorem [3.2.1] there is an
“adversary” policy of assigning the universal variables for which at least
one clause in ® is false, for every assignment of the enclosing existential
variables. For every universal variable z;, the probability that exactly one
universal edge is unblocked is 1/4. Therefore, there is a probability of at least
(4)2 for the “adverse case”, where the only universal edge that is unblocked
for each universal variable x;, is consistent with the adversary policy. In
this adverse case not all the clause edges are visited upon reaching ry. Note
that P,, already excludes events where both universal edges are blocked for

some variable, thus r( is not reached. Therefore if ® is false, then for every

1

1)2. Hence define By as follows.

reasonable policy w, P§ > (

By = Dy + Py (D +37 5L+ (1= 378) (P2(m+ 1) + (1= P,)L) ) (3.10)
Then By > By, and if ® is false, then C'(7) > By. Now let
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h =c((s,t)) = Bo+2""mP,, (3.11)

Then By > h > By. Thus the optimal action at s is to traverse (s,t) if
and only if ® is false.

It remains to show that G4 is constructed in a time polynomial in the
size of the input. As the size of every baiting and observation gadget is ©(L),
the CTP graph G¢ contains a polynomial number of vertices and edges. By
construction, all the probabilities of the edges can be described as a division
of two polynomials. Likewise for every edge cost, except for the default
edge (s,t) and its cost h (see Equations (3.11)), and (3.9)). To show that h
can be computed efficiently observe that due to symmetry of all the true-
paths and false-paths of all the variables section, Dy, D, and F,, can all
be computed efficiently by using simple algebraic operations. For example,
D,; can be computed by summing the costs of traversing a path from s to
ro through the variables section and the guards section, which is the same
for all weathers where 7y is reached. Therefore GG can be constructed in a
polynomial time.

Thus we have that determining whether there exists an optimal policy
starting with traversing the edge (s,t) is PSPACE-hard. As membership in
PSPACE has been shown in [31] (but see [14] for a CTP-specific algorithm),
Theorem [3.3.7] follows. O

The following corollary is immediate from the proof of Theorem [3.3.1}

Corollary 3.3.7 The following CTP decision problem called “CT'P expected
cost decision problem” 1s PSPACE-hard: Given an instance of the CTP, and

k > 0, does there exist an optimal policy with an expected cost of at most k.

Several corollaries follow due to the construction of Gg: By replacing all

the edges with appropriately directed edges, we get:

Corollary 3.3.8 The CTP decision problem with directed edges and the
CTP expected cost decision problem as stated in Corollary[3.3.7 with directed
edges remain PSPACE-complete.

42



3.3. Complexity of the CTP

Finally, as every unknown edge in this construction of G¢ has cost 0 and
a probability that is a power of 2 of being unblocked (the universal edges, for
example, can be split into a two-edge path), we can replace every unknown

edge with a path of zero-cost, blocking probability 1/2 edges and get:

Corollary 3.3.9 The CTP decision problem and the CTP expected cost de-
cision problem as stated in Corollary[3.3.7], remain PSPACE-complete even
if all the unknown edges have zero cost and blocking probability 1/2.
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Chapter 4
Decomposing the CTP

The intractability of the CTP, as shown in Chapter [3] calls for an analysis of
the obstacles in solving the CTP. It seems that a major obstacle lies in the
ability of the agent to traverse between several regions of the CTP graph,
without having to fully exploit any of them. See example in Figure [5.2]
Chapter [} Thus a general "divide and conquer” approach of the CTP seems
to be hopeless. In this chapter and in the following chapter, we explore a
variety of specific topologies and specific CTP variants, for which a "divide
and conquer” approach can be used to yield polynomial time solutions.

We start this chapter by showing how changing the cost function, or
the blocking probability function of a CTP instance I, affects the optimal
cost for I. We then introduce a technique to partition a CTP instance into
CTP sub-instances, and show how to use these techniques for special graph

topologies.

4.1 Comparing different CTP instances

We show that the optimal cost is monotonically increasing in the cost and
blocking probability functions. This work is a generalization of previous
work by [46] in which the only changes discussed are in unblocked edges that
become blocked.

We start by showing that the optimal cost is monotonically increasing
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in the cost function. The following lemma is easily proved from Equation
(2.8), as C'(7) = Yeer acw(e), where o, > 0 depends on the edge’s blocking
probability.

Lemma 4.1.1 Let I = (V, E,s,t,p,w), and I' = (V, E,s,t,p,w') be CTP
instances such that w' < w. Let ©*, 7" be optimal policies for 1,1 respec-
tively. Then C(n™*) < C(7*).

Proof: We show that if w'(e) < w(e) for an edge e € F, and w'(e1) = w(ey)
for every e; # e, then C(7n") < C'(7*).

Assume C(7*) = acw(e) + Seze aww(€’). As both I and I’ have the
same CTP graph (V| E), then the belief states of B; and By have the same
variables-status representation. Therefore we can define the following bijec-
tion f : By — By. For every belief state b € By, Loc(b) = Loc(f(b)), and
ble’ = f(b)|e for every ¢/ € E. We then construct a policy 7’ for I’ such that
m'(b) = 7*(f(b)) for every b € Bp. Hence C(n') = aew'(€) + Serze cww(e€)
where o, > 0. As w'(e) < w(e), we have C(n") < C(7*), and since by defini-
tion C(7"*) < C(n'), we have C'(7™*) < C(n*).

(I

Next, we show that the optimal cost is monotonically increasing in the
blocking probability. A stochastic policy is a policy x in which the action
x(b) is a random variable at every belief state b. It is immediate from the
Bellman equation [4] (and in particular from Equation that for every
stochastic policy x for a CTP instance I, there is a deterministic policy m
such that C'(m) < C(x). However, stochastic policies can still be used for
proof techniques, as in the proof for the following Lemma [£.1.2l We provide
a proof outline; the full proof appears in Appendix [C]

Lemma 4.1.2 Let I = (V, E,s,t,p,w), and I' = (V, E,s,t,p’,w) be CTP
instances such that p’ < p. Let 7, 7" be optimal policies for I, 1" respectively.
Then C(m"™) < C(7*).
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Proof outline. We show that if p’(e) < p(e) for some e € E, and p'(e;) =
p(ey) for every e; # e, then C (") < C(7*).

We say that e is revealed in a transition from a belief state b’ to a belief
state b in a policy 7 if b = b;f(b,) for some observation o, and if the status of

e is unknown in ¥ and is known in b.

We then construct a stochastic policy w) for I’ such that in some cases,
when e is revealed to be unblocked in a belief state reached in 7y, then 7}
acts as if e is still blocked with a certain probability. Next we show that
C(m) = C(r*). As 7'* is an optimal policy for I, then C(x"™*) < C(rx}), and
therefore C(7"™) < C(7*). O

The following theorem follows immediately from Lemma and Lemma
4.1.2

Theorem 4.1.3 The cost of an optimal policy for a CTP instance is mono-

tonically non-decreasing in the edge costs and the edge blocking probabilities.

4.2 Partitions and constrained policies

The objective in the CTP is to find a policy that minimizes the expected
cost of traveling from s to t. This objective can be generalized to find a
policy that minimizes the expected traveling cost, plus other constraints that
every policy has to meet. For example, a policy is forced to visit a certain
vertex, or to traverse a certain edge (thus practically forcing a policy to have
"landmarks”). A policy that has to meet additional constraints is called a
constrained policy, and a con; policy for a specific constraint con;. A CTP
variant in which the objective is to find a constrained policy with a minimized
expected cost among all constrained policies (with the same constraints), is
called constrained-CTP, and con,-CTP for a specific constraint con,. Finding
an optimal (constrained) policy for constrained-CTP can yield a solution for
CTP instances in which this constrained policy happens to be optimal among

all policies.
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4. Decomposing the CTP

4.2.1 Constrained policies

We say a graph G is st-blocked in a belief state b if all the paths from a vertex
5 to a vertex t in GG are known to be blocked in b. We denote the probability
that G is st-blocked in by by Pg 5. The st-reliability problem, finding P s,
is known to be #P-hard |41} [31]. When s, t are obvious from the context we
simply say that G is blocked, and denote P, by Fg.

Throughout this section I = (V, E,s,t,p,w) is a CTP instance with a
CTP graph G = (V, E), and G’ = (V' E') is a subgraph of G with ¢, ¢ € V.
The CTP instance I' = (V' E', s, t/,p | E',w | E') is called a sub-instance
of I. We sometimes denote I’ by the tuple (G', s, t').

Throughout this work we assume that G’ is connected to the rest of the
graph through only s’ and #'. We also assume that the edges of Ey N (E\E")
are known to be unblocked. For example, Figure depicts a CTP instance
M, with a sub-instance M’ over a sub-graph G’. The only two unknown
edges in M are (up,t') and (ug,t').

Note that unlike the CTP instance I, there is no guarantee that the CTP
sub-instance I’ of I has an always unblocked path from s’ to t’. However,
if G’ is found s't’-blocked in a belief state b, then the agent must retrace
to s' and ”‘departure”’ G’ through s’ (see below for the exact definition of
departure a sub-graph).

Therefore we virtually add, for computational purposes alone, an always
unblocked edge e = (§',t') with a very high cost w(e). For every optimal
policy, e is traversed if and only if all the paths in G’ from s’ to t’ are found
blocked. As e is traversed with probability Pgr, we subtract Perw(e) when
computing the expected cost of a policy for I’. See Figure for the CTP
sub-instance M’ obtained from G’ and M.

Recall that L is a function that assigns a belief state to every node in 77,
and assigns an action/observation to every arc in Ty (see Section[2.3.4). The
following concepts are defined to be able to reason about properties of the
policy 7 (by an "external” observation, rather than by the agent himself).
An action move(e) is said to be inside G" if e € E’, and outside G’ if e & E'.
For an O R-node z € T}, which is not the root in T}, and z”, the grandparent

48



4.2. Partitions and constrained policies
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Figure 4.1: A CTP instance M, with a sub-graph G’, circled in grey.

S/

Uy

wi |p1

tl

Figure 4.2: The CTP instance M’. Note that M’ = (G',s,t') is a sub-
instance of M from Figure The edge (', 1) is virtually added to define
the optimal cost of M’.
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4. Decomposing the CTP

of z, we define PrevAction,(z) to be n(L(2")). NextAction,(z) is defined
to be m(L(z)). If z is an AND-node in Ty, and 2’ is the parent of z, then
PrevAction,(z) = n(L(2")). If z has only a single child 2’ in T} ( as a result
of only a single observation received at L(z)), we define NextAction,(z) to
be 7(L(2")).

We say that an OR-node z € T}, where L(z) = b, is an entry point (in
T,) of G', if w(b) is inside G’, and either b = by, or PrevAction,(z) is outside
G’. We say that z is the first entry point (in 7) of G', if z is an entry point
of G’, and there is no ancestor of z in T that is an entry point of G'. If
Loc(b) = v we say that z is the first entry point of G’ (in T ) through v.
We define Z™(G', ) to be the set of OR-nodes in T}, that are the first entry
points of G’ through s'. Let B™(G',7) = {L(z2) |z € Z™(G',7)}.

For example, Figure depicts a policy tree, for a policy 7 for M from
Figure 4.1, The OR-node z is the first entry point of G’ in 7 through s'.
Therefore L(z) € B™(G', ).

We say an AN D-node z, with L(z) = b, is a departure point of G’ (in
T.) , if PrevAction,(b) is inside G’, a single observation is received at b, and
NextAction,(b) is outside G'. z is the first departure point (in 7) of G, if
z is a departure point of G’ and there is no ancestor of z in T, that is a
departure point. If Loc(b) = v we say that z is the first departure point of
G’ (in T) through v.

We define Z5““(G’, ) to be the set of AN D-nodes that are a first de-
parture point through ¢. We define Z/%(G’, 7) to be the set of AN D-nodes
that are a first departure point through s, and such that G is s't’-blocked in
L(z) for every z € Z/4(G' 7). Let ZoG', m) = Z*u(G',7) U Z/ (G ).
Let B**e(G 1) = {L(2) | z € Z**¢(G', )}, and B/(G' 1) = {L(2) | z €
714G m)}. Let B(G' wr) = B*“(G', ) U B/(G' ) .

For example, the AN D-nodes z1, 23 in Figure [£.3] are the first departure
points of G’ through t', and therefore L(z;), L(22) € B**““(G’, ). The AN D-
node z3 is the first departure point of G’ through s’ and G’ is s't’-blocked in
L(23); therefore L(z3) € B/%(G' 7). B®(G',7r) = {L(21), L(22), L(z3)}.

Claim ensures that every belief state in 7, cannot be reached in 7

from two separate belief states; therefore B™(G’, ), and B°“(G’, 7) are well
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4.2. Partitions and constrained policies

move(s.s’)

t') = blocked

move(us, ug, )

<3

move(t',t) move(s’, s,v1,t)

Figure 4.3: A policy 7 for M. The square nodes are O R-nodes, the round
nodes are AN D-nodes.

defined.

Recall that B(b, ) is the set of belief states reachable in 7 from b. For
b € B"(G', 7), let B*(G',w) = B (G',7) N B(b,m) be the belief states
in B*(G’,m) that are reachable from b in 7. As the edges of Ey N (E\E')
are known to be unblocked, we have that if b € B™(G’,7), and by, by €
B (G, ), then by|e = bsle for every e € E\E' .

We now define a committing policy. Informally 7 is I’-committing if once
G’ is first entered through s, the agent either departs G’ through ¢ or finds
G’ to be s't’-blocked, and then departs through s’. In both cases, once G’ is

departed, no edge of G’ is traversed again. The formal definition is as follows.
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4. Decomposing the CTP

Definition 4.2.1 A policy 7 is I'-committing (or (G', s, t')-committing) if
the only entry points of G' in Ty are of Z™(G', ), and the only departure
points z of G' in Ty are of Z°(G', ).

When §',t" are obvious from the context we say 7 is G’-committing. The
policy 7 depicted in Figure is an M’-committing policy.

In Section [4.2.2|we see that by dividing a CTP instance [ into specific sub-
instances, and considering policies that are sub-graph committing, we can use

77 approach on the sub-instances of I. Thus on specific

a ”‘divide and conquer
CTP instances, finding the optimal solution for every sub-instance yields an
optimal solution for the general instance. For example, in a disjoint path
topology (see Section , in which every two paths from s to t are vertex-
disjoint, an optimal policy is a constrained policy that is (1}, s, t)-committing
for every path I;.

Next, we establish a relation between I’-committing policies for I, and
policies for I’. Let m be a policy for I, a belief state b € B;, and a collec-
tion of belief states B C B(b,m). We define trunc(m,, B) to be the partial
policy truncated from 7, by removing the actions in every ¥’ € B. That is,
Tirune(m,B) 18 obtained from T7, by removing every out-going arc from every
vertex v with L(v) € B. For example, the tree in the dashed square, from
Figure 1.3} is Tirunc(m,,) for b = L(z), and B = {L(z1), L(22), L(z3)}. Note
as every such vertex v, with L(v) € B, becomes a leaf in T} yne(r,,5), then
C(trunc(my, B)), the cost of m, g, can be computed as in Equation .

We say a belief state b is between By and By if there is a belief state
by € Bj, such that b is reachable from by, and there is a maximal cut §
in Ty, such that L(z) € By for every z € S. Informally, let © be an I'-
committing policy for I. We say m simulates a policy «’ for I if for every
belief state between B™(G’, 1) and B°“(G’, ), there is a corresponding belief
state b’ € Bp with the same variables-status representation over the edges
of E’, such that 7(b) = #/(b'). The policy 7’ is called the contraction of
7 to I, and C(trunc(m, By*(G',7))) = C(x') [l The formal definitions

of policy simulation and contraction of a policy are delicate, and therefore

'We ignore the default edge of (s',t'), see Appendix for details.
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4.2. Partitions and constrained policies

appear in Appendix [D.1} For example, the policy 7’ for M’ on Figure is
a contraction of the policy 7 (see Figure to M’ (see Figure [4.2)).

move(us, ug, ")

move(s',t')

Figure 4.4: A policy 7’ for M’, which is a contraction of = to M.

Now suppose that m is an optimal I’-committing policy; that is, 7 is op-
timal among all I’-committing policies for I. One may ask if the contraction
of m to I' is an optimal policy for I’. Indeed the answer is positive, as shown

in the following lemma.

Lemma 4.2.2 For every optimal I'-committing policy w for I, the contrac-

tion of ™ to I' is an optimal policy for I'.

Proof: Let 7 be an optimal I’-committing policy for I, and let b € B™(G’, ).
By an argument identical to Claim [2.3.1], we can assume that 7, is an optimal
I'-committing policy for I,. Let n’ be the contraction of 7, to I’. Assume
in contradiction that 7’ is not optimal. Then there is a policy x’ for I’ such
that C(x) < C(n’). Let xp be a policy for I, that simulates y’.

First note that for every by € B/*(G',m), and dy € B{* (G, x;), we
have Loc(by) = Loc(dy), and by|le = d;le for every e € E\E’. This due to
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4. Decomposing the CTP

the fact that the edges of E; N (E\E’) are known to be unblocked. Let E’-
exclusive be the following constraint ”the edges of E’ cannot be traversed”.
As 7, is an optimal I'-committing policy, then 7, is an E’-exclusive policy.
Again, by the same argument as in Claim [2.3.1] 7, can be assumed to be
optimal among all E’-exclusive policies for [j,,.

Therefore, there is an E’-exclusive policy vy, for Iy, such that C(m,,) =
C(vg,) (see Lemma in Appendix [D] for details). Following the same
argument, for every by € Bj“(G',m,), and dy € B;"°(G', xs), there is an
E’-exclusive policy vy, for 14, such that C(m,) = C(vg,).

Now construct a policy v, for I, from the policy x,, as follows. For every
AN D-node z € Ty, where L(z) = dy, and dy € B{*'(G', x3), extract T, (z),
and attach T,, (2) instead. Likewise, for every AND-node z € T}, where
L(z) = dy, and dy € Bj"(G', xp), extract Ty, (2), and attach T,,, (z) instead.

Then v, is I’-committing, and we have

C(ry) = C(X) + PerC(mp,) + (1 — Por)C(my,)

Note that

C(m) = C(n') + PorC(my,) + (1 — Por)C(,)

Therefore, as C(x’') < C(n’), we have that C(v,) < C(m), contradicting
the optimality of 7, as an optimal I’-committing policy for Ij,.
O

4.2.2 Decomposing CTP instances

Let I = (G, s,t,p,w) be a CTP instance with I’ = (G', s, ), a sub-instance
of I where G’ = (V', E’). Note that the goal vertex of I and I’ is the same.
Let 7* be an optimal I’-committing policy for I, and let 7'* be an optimal
policy for I'. By Lemma we can assume that 7'* is the contraction of
7 to I'. Therefore, if b € B™(G',7*), then trunc(w;, By*(G, 7)) can be
considered as a single macro-action, denoted by TRY (I’), and we say that

I' is tried in 7*. When I’ is obvious from the context, we denote TRY (I")
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4.2. Partitions and constrained policies

by TRY (G') , and say that G’ is tried in 7*.

The results of TRY (I’) are either that the agent is at ¢, or that the agent is
at s and G’ is found to be s't-blocked. Note that E[TRY (I')] = C(7'*). Let
Qc = 1— Pg be the probability that G’ is not blocked. Let Dg = E[Tgizl(c')}
(for now we assume that Per < 1, see remark below). When G’ is
obvious from the context we sometimes denote E[T'RY (G')] by C(G’). The
parameter D, called the factored cost of G’, is a property of the subgraph
(G',¢',t) and is used for comparisons between different subgraphs. Note
that these definitions are a generalization of the TRY (i) and D; obtained in
disjoint path graphs (see Section [2.5]).

Let I} = (Gy,s',t) and Iy = (Ga, s, t) be sub-instances of a CTP instance
I = (G,s,t,p,w) such that G; = (Vi, Fy) and Gy = (V3, E3). Assume that
VinV,y = {s,t}. Then by traversing G'; no edges of Gy are revealed, and by
traversing GG, no edges of Gy are revealed. Let 7 be a policy for I that is both
G1-committing and Ge-committing. Then T'RY (G;) is performed in every
belief state in B™(Gy,7), and TRY (Gs) is performed in every belief state
in B™(Gy, ). We say that Gy succeeds G in 7 if B/%(G, 1) = B™(Gy,7)
E|. An alternative policy for I can be a policy n’, obtained from 7, in which
GG1 succeeds Go. We then say 7’ is obtained from 7 by switching G; and
(GG5. Note that this switching is possible as the entry and departure points
of G1 and Gy are the same. We denote the constraint: ” 7 is (G1, Gs)-
committing and G is successor to GG;” by Gy-succ-G1, and the constraint:

" is (G, Go)-committing and G is successor to Go” by Gy-succ-Gs.

Lemma 4.2.3 Let © be a Go-succ-Gy optimal policy for I, and let @' be a
G1-succ-Go optimal policy for I, such that @' is obtained from w by switching
G1 and Gy. Then C(m) < C(n') iff Dg, < Dg,.

Proof: As 7’ is obtained from 7 by switching GG; and G, we have that
B™(Gy,7) = B™(Gy, 7). Let b € B™(Gy,w), and let v € T, and v' € Ty be
such that L(v) = L(v') = b. We show that V™ (v) < V™ (v') iff Dg, < Dg,.

Then proof follows by backward induction as in Claim [2.3.1]

2We can make this comparison as only a single observation is received in every belief
state in Bf¥ (G, 7).
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4. Decomposing the CTP

Note that for every by € B/*(Ga,7) and b, € BI"(Gy,7'), we have
Loc(by) = Loc(by), and by|e = byle for every e € E\(E, U Ey). Let (Ey, Es)-
exclusive be the following constraint: ”the edges of F; U E5 cannot be tra-
versed”. As 7 is Gg-succ-G; optimal, and as «’ is Gi-succ-Go optimal,
we have that m, is (1, Ey)-exclusive optimal for I, and m, is (Ey, Es)-
exclusive optimal for I,. Now from Lemma in Appendix [D] we have
that C(m, ) = C(m,). Denote C(m,) by W. Then

VW(U) = C(Gl) + Pq, (C(GQ) + PG2W) (41)

and

!

VT (Ul) = C(Gg) + PG2(C(G1> + P01W) (42)

which implies
V™ (v) < V™ () iff Dg, < Dg,

as required.

Remark 4.2.4 Note that if w.l.o.g. Pg, = 1 then it follows straight from
FEquations and that V™(v') < V™ (v). Therefore when comparing a
policy with a switched policy, we assume throughout this work that P < 1
for every graph G.

We now generalize the concept of "switching policies”, and define a par-

tition of a CTP instances to several sub-instances.

Definition 4.2.5 A CTP instance I = (V, E,s,t,p,w) (where G = (V, E))
is a partition of CTP-instances ((G1,5',t),--+(Gk, s',t)) of M, where G; =

o Uik Vi=V and Ui<x & = E.
. ViNV; = {51}
I is called a {G4,--- ,G}-CTP partition .
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4.2. Partitions and constrained policies

Let 7 be an optimal policy for a {Gy,- - , Gy }-CTP partition I, and as-
sume that 7 is G;-committing for every ¢ < k. By Lemma [4.2.2] we may
assume that every contraction of 7 to G; is an optimal policy for G;. There-
fore, as every edge in F belongs to some Fj;, the policy m can be described
as a permutation of TRY (G;) macro actions over {1---k} as follows. At
step 4, unless t is reached, perform T'RY (G;). Assuming w.l.o.g that the

permutation order in 7 is {1,--- k}, we have that the cost of C(r) is

C(r) = _([I Pe.)Cl(me,) (4.3)

i<k I<i

Then the following corollary is immediate from Lemma [4.2.3]

Corollary 4.2.6 The optimal order of ® is a non-decreasing order of the
factored costs of the G;.

Using Corollary we present a divide and conquer framework called

the partition framework for finding optimal policies for a CTP instance I:
e Find a partition of I to CTP sub-instances {G; | i < k} for some k.
e Find D, for every ¢ < k.

e Show that a {G; | i < k}-committing policy for I is optimal among all
policies for M.

The difficulty of course is to find the "right” partition, assuming there is
one, as every step in this framework can be intractable. To find Dg;,, one
has to find the optimal cost for G;, which is a PSPACE-complete problem
(see Chapter [3). Finding Qg, is a #P-complete problem [41]. Also note that
finding the optimal cost, is different from finding the actual optimal policy
(or the first move in such policy): sometimes one is easy to solve while the
other is hard. However, we suspect that by using this framework we can
find policies with a better approximation to the optimal cost. For example,
we can decompose a CTP instance into several sub-instances, where in each

sub-instance a different heuristic is implemented in order to approximate
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4. Decomposing the CTP

Dg,, and thus provide a more accurate solution. In Chapter |5 we give an
example of where this framework can be implemented and yield an optimal
solution for various CTP instances. Note that it is generally not true that
every optimal policy can be subgraph-partitioned, as the observations that
the agent receives during traversal in a certain subgraph can affect the agent’s

decision making after a subgraph is departed.

Remark 4.2.7 Recall that a vertex v € V' s explored in a belief state b if
the status of all its incident edges is known in b. Let U(G) C V be the set
of all vertices in V' that are explored in by. By re-defining commitment of
policy, C’orollary still holds for subgraphs with mutual vertices in U(G).
Therefore we can generalize the partition framework to such subgraphs. See
Appendiz[D.J for the exact details.
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Chapter 5

The CTP on Trees

CTP-Tree, defined below, is a CTP in which all the vertices in the CTP
graph, apart from ¢, form a tree with s being the root. CTP-Tree is a gen-
eralization of CTP-DISJ (Section [2.5). As CTP-DISJ has a polynomial time
solution, while CTP on a general graph is PSPACE-complete, the analysis of
CTP-Tree is a natural research direction. We can only conjecture that CTP-
Tree is intractable. However, as the st-reliability problem has a polynomial
time solution on trees (well known, but see Lemma in Appendix
for the proof), we provide by using the partition framework (Section ,
several special variants for CTP-Tree for which there is a polynomial time
solution.

A free edge is a zero cost edge known to be unblocked. CTP-Tree is a
CTP instance T' = (V, E, s,t,p, w) such that the graph (V\{t}, E\E}) is a
tree with a root s. The edges of F; are free edges, called terminal free edges,
which connect ¢ with every leaf in (V\{t}, E\E}); see Figure [5.1]

As the objective in CTP is to find a strategy that minimizes the expected
travel cost from s to t, we may assume that once a leaf [ in (V\{t}, E\E})
is reached, the edge (,t) is traversed. Therefore throughout this work we
consider a CTP-Tree T as if it were a tree with a root s. The objective is

then to find a policy that minimizes the expected travel cost from s to a leaf
lin VI

'We can assume that the default edge is an edge (s,t’) in which (#,t) is a terminal free
edge.
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5. The CTP on Trees

Figure 5.1: CTP Trees. Dashed edges are terminal free edges.

The problem of whether CTP-Tree admits a polynomial time solution is
still open. The main difficulty lies in the fact that an optimal policy for
a subtree does not necessarily yield an optimal policy for the entire tree.
Therefore, unlike many solutions to problems with a tree layout, a dynamic
programming method seems unlikely to work; see Figure [5.2] and Figure [5.3
for examples. In what follows we provide several approaches and variants for
which a polynomial time solution can be found. For clarification, the policy

tree of a policy 7 is denoted by 7, throughout this chapter.

U1 V2

1000.5

Ny

t

Figure 5.2: CTP Trees. The optimal policy (with a cost of 300.5) is to
traverse (s,v1); if (v1,v4) is blocked, traverse (s,v1) and (s,vy) to vy If
(vg,v5) is blocked, retrace to v; and reach ¢ through (vy, v3).
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5.1. Trees with no exploration vertices

U1 V2

1000.5

N

t

Figure 5.3: CTP Trees. The optimal policy (with a cost of 290.5) is to
traverse (s, v2). Then, regardless of whether (v, v5) is blocked or unblocked,
traverse (s,vy) and (s,v1) to vy. If (v1,v4) is blocked, and (v, v5) was found
unblocked, retrace to vy and reach ¢ through (ve,vs). (v1,v4) is unblocked
then reach t through vy

5.1 Trees with no exploration vertices

Recall that T'(v) is the subtree of a tree T" with a root v € T. TF(v), for
v # s, is the subtree gained from T'(v) with Parent(v) as an additional vertex,
and (Parent(v), v) as an additional edge; see Figure[5.4 The probability that
a subtree T" with a root v is vt-blocked is denoted by Pr. For a constrained
CTP-Tree T, a vertex v # s is called a committing-vertex, if the only policies
that are considered as a solution are those that are (779" (v), v, t)-committing
(then the objective is to find an optimal (779" (v), v, t)-committing policy).
If v is a committing vertex, and the agent traverses the edge (Parent(v),v),
then the agent retraces to Parent(v) if and only if T'(v) is found to be vt-
blocked. Thus using methods acquired from Section [4.2] an optimal solution
for TP (v) can be used to find an optimal solution for CTP with a com-
mitting vertex v. A vertex v # s in T that is not committing is called an
exploration verter . A CTP-Tree T is called k-Exp-CTP-Tree, if there are at
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5. The CTP on Trees

most k exploration vertices in 7. 0-Exp-CTP-Tree is a CTP-Tree in which

all the vertices, apart from s, are committing.

Theorem 5.1.1 0-Ezp-CTP-Tree admits a polynomial time solution.

" Parent(v)

Figure 5.4: CTP Trees. TT% (v) has an additional vertex Parent(v), and an
edge (Parent(v),v).

To prove Theorem [5.1.1, we present a recursive polynomial time algo-
rithm, based on "sorted DFS”, called NoEzpTreeSolver (see Algorithm ,
which provides a polynomial time solution for 0-Exp-CTP-Trees.

Given a vertex v € V of a 0-Exp-CTP-Tree T, NoExpTreeSolver(v)
returns the optimal cost for T'(v), denoted by C(7T'(v)), and the first action
in a policy that achieves this optimum. Therefore NoExpTreeSolver(s)
returns the optimal cost for 7" and a first action in an optimal policy for T
For v € T, recall that v and all the children of v are committing. There-
fore by using the partition framework described in Section [4.2.2] an optimal

policy for T'(v) can be represented as a permutation over the macro-actions
TRY (TT(v;)) for the children v; of v. The value C’(u), where u is a child
of v, is E[TRY (T**(u))], which is computed to be:

E[TRY (T (u))] = (1 = p((v,u))) (w((v,w)) + C(T(w)) + Prayw((v,u)))

As T'(u) is a tree, Ppy can be recursively found in polynomial time,
see Lemma in Appendix [E] Note that BestCost in Algorithm [I} is

computed as in Equation [4.3| . Therefore the correctness and optimality of
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NoExpTreeSolver is immediate from Corollary [4.2.6) BestCost is indeed
the optimal cost for T'(v), and BestAction is a first move in a policy that

achieves this optimum.

Algorithm 1: NoExpTreeSolver(v)

BestAction = NULL, BestCost = INF;
if v=tthen
| return (NULL,0) /xtarget reached, cost 0, no action*/

N, + the children of v;

foreach vertex u € N, do
C'(u) (1= p((0, u))((1 + Pro)ul(v,u)) +
NoEzpTreeSolver(u).BestCost);
D' (u) + —Sw .

17PTPu'r' (uw) !

sort N, to an array {z1,---, 2z} in a non-decreasing order of D'(z;);
BestCost < Y i< [[o<i Prear(.,)D'(2i);

BestAction < move(v, z1);

return (BestCost, BestAction)

Note that for every vertex in T', NoExpTreeSolver is recursively called
exactly once. As the calculation of Prrar(, for every vertex u can be done
in O(n), and as the children of every vertex v are sorted, we have that
NoExpTreeSolver admits a run time of O(n*log(n)) [}

5.2 Polynomial time solution for 1-Exp-CTP-
Tree

We next discuss 1-Exp-CTP-Trees, which contain only a single designated
exploration vertex. We provide a polynomial time solution for instances of 1-
Exp-CTP-Tree in which the adjacent edges of the (single) exploration vertex
are unblocked. This result can be easily extended for instances of 1-Exp-

CTP-Tree in which only the outgoing edges of the exploration vertex are
unblocked.

2In fact, the run time can be reduced to O(nlogn) with a more careful calculation.
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Let T = (V, E,s,t,p,w) be a 1-Exp-CTP-Tree instance, and let v!' € V
be the exploration vertex in V. Assume that the outgoing edges of v are all
unblocked. As v!' # s then v! has a parent Parent(v'), which is denoted in
this section by v° (see Figure . Next, note that as every descendant u of
v! (where u # v') is a committing vertex, the optimal cost of 77 (u) can
be found in polynomial time by using NoExpTreeSolver (see Section for
details). Likewise, if u is a descendant of a sibling of v, then 77" (1) can be
found in polynomial time by using NoExpTreeSolver as well. Thus, if u is
a child of v! or a sibling of v!, and the agent is located in u, then Parent(u)
is retraced if and only if 7'(u) is found blocked. We say that a child u of
v or v! is chosen by the agent, if the next action performed by the agent
is TRY (TP (u)). Table shows the possible actions in every reasonable

policy m when the agent is located anywhere in T'(vY).

|
|
| I \
|

Figure 5.5: 1-Exp-CTP-Tree. 1° is the parent of v!. The children of v! are
denoted by {vi --- v/ }. The siblings of v! are denoted by {v{--- v} }.

As crossing (vY;v!) back and forth is clearly not optimal, it remains to
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5.2. Polynomial time solution for 1-Exp-CTP-Tree

Table 5.1: Reasonable policy actions in 7

Location Action
v? cross (v, v') or choose the next child of v, see Rule |5.2.1
vl cross (vY,v!) or choose the next child of v! , see Rule [5.2.2
u: a child of vl perform TRY (T (u)); if blocked, retrace to v*
u: a sibling of v!, perform TRY (T (u)) ; if blocked, retrace to v’
vY and T'(vY) is blocked cross (Parent(v°), )

see how the next sibling of v! is chosen at v°, in case (v°,v!) is not crossed,
and how the next child of v' is chosen at v!, in case (v°,v!) is not crossed.
Let 7 be an optimal policy for T, and let 2° € 7T, be a node in which
(T(v°),v°,¢) is first entered. Let L(z°) = b°. As every reasonable policy must
meet the restriction in Table we may assume that the CTP sub-instance
of T' with the initial state 0°, can be described as a {GY|i < ko }-partition,
for ko > 0, as follows. For every i < ko, either G? = TF% (u), where u is
a sibling of v!, or GY is a subgraph of T7""(v') (which fully contains one or
more subtrees of children of v!'). The last subgraph in the partition, Ggo, is
distinet from T'(v") and is entered through (Parent(v°),v°) when T'(v°) is

Y is not retraced again; therefore t is reached

found blocked. In this case, v
in G, .

Denote the set of vertices of graph GY, for i < kg, by V. Then, as the
outgoing edges of v! are unblocked, the vertices of V& N Vel (apart from
v%) are exposed vertices. Iﬂ, Therefore, following the partition framework in
Section [4.2.2] and Remark [4.2.7] for subgraphs with mutual exposed vertices,
mpo can be described as a permutation of macro actions TRY (GY) of i < k.

Then by Corollary [4.2.6] we have the following rule.

Rule 5.2.1 Let uy,uy be siblings of v*. Then at v°, if T'(v°) is not blocked,
it is optimal to choose uy before uy if and only if T (uy) is unblocked, and
D(T"" (ur)) < D(TT (uz)).

Rule states the next sibling of v! that is to be chosen in every

reasonable policy when the location of the agent is v° (in case (vg, vy) is not

3The edge (v°,v!) can be assumed to be unblocked as well, as otherwise the entire
problem becomes trivial.
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traversed of course).

We assume w.l.o.g. that the G are ordered such that if u;, uy are siblings
of v', GY = TP (uy), GY = TP (uy), and D(T"* (uy)) < D(T**"(us)), then
1< 7.

We now repeat the same argument, but for v!, with z! € 7. being a
node in which (T'(v'),v',t) is first entered . Let L(z') = b'. As before,
we may assume that the CTP sub-instance of T' with the initial state b' is
a {G}|i < k;}-partition as follows. For every i < ky, either G} = TP (u),
where u is a child of v!, or G} is a subgraph of TP (v%), which contains (v, v')
and is distinct from T'(v!') (G} fully contains several subtrees of siblings of
v'). Again, the last subgraph, G} , is distinct from T'(v'), and is entered
when T'(v') is found blocked. Following the partition framework, we have
that m, is also a permutation of macro actions TRY (G}) of i < ky, and by
Corollary and Remark [1.2.7] we have the following rule:

Rule 5.2.2 Let uy,uy be children of v'. Then at vt, if T(v') is not blocked,
it is optimal to choose uy before uy if and only if T (uy) is unblocked, and
D(T"" (u1)) < D(TT (uz)).

Rule states the next child of v' that is to be chosen in every reason-
able policy when the location of the agent is v! (again, in case (vg, v1) is not
traversed).

We again assume w.l.o.g. that the G} are ordered such that if uy, us
are children of v, G} = T (uy), Gj = TP (uy), and D(T"*"(uy)) <
D(T? (uy)), then i < j.

Using Table [5.1], and Rules and [5.2.2] we provide a dynamic pro-
gramming algorithm that runs in polynomial time, and computes the op-

timal cost of T'(v°) and the first move in a policy that achieves this opti-
mum. Denote the siblings of v° by {of,--- v} } such that D(T7(2?)) <
D(T*" (v9,,)), and the children of v* by {v{, -+, v} } such that D(T"*" (v})) <
DT (0],).

For k € {0,1}, note that as every vertex in T'(vF) is committing, then

D(TFe (vF)) can be found in polynomial time by using NoExpTreeSolver
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to calculate C'(T7 (vF)) (finding Prrar(yry Is easy; see Lemma in Ap-
pendix [E)).

Next, we construct a dynamic programming table H of size 2 X (lp +
1) x (I +1). The cell H(0,4,7) holds the optimal cost for (T (v°),v°,¢)
at every belief state b in which (v° v') is unblocked, Loc(b) = v°, the
only not known to be blocked subtrees of v° (apart from 77 (v)) are
those of {77 (vf)---T"* (v))}, and the only not known to be blocked
subtrees of v' are those of {77 (v}),---T"* (v} )}. An additional variable
BestAction(0, 1, j) holds the first action in an optimal policy for I,.
The cell H(1,4,7) holds the optimal cost for (779 (v°),v°,t) at every belief
state b in which (v°, v') is unblocked, Loc(b) = v!, the only not known to be
blocked subtrees of v” (apart from 77" (v;)) are those of {77 (vf) - - - TP (v} )}
and the only not known to be blocked subtrees of v* are those of {77 (v}), - - - T"*" (v}, ) }.
BestAction(1,1,j) holds the first action in an optimal policy for I,. For
i = lo+ 1, the cells H(0,4,7) and H(1,4,5) hold the optimal cost when all
the subtrees of v°, apart from T'(v'), are known to be blocked. Likewise, for
j =1y + 1, the cells H(0,4,7) and H(1,4,7) hold the optimal cost when all
the subtrees of v' are known to be blocked. See example in Figure [5.6]

Then H is computed as follows.

e For every k € {0,1} and j <y + 1, H(k,lo + 1,7) is computed using
NoExpTreeSolver.

e For every k € {0,1} and i < ly+ 1, H(k,i,l; + 1) is computed using
NoExpTreeSolver.

e For k=0,1 <y and 57 <l; we have

H(0,,5) = min{C(T"*" (v0)) + Ppearo H (0,7 +1,5),

w((@,01)) + C(T" (W) + PrraruyH(L i G + 1)} (5.1)
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| \
| \

Figure 5.6: 1-Exp-CTP-Tree, in a belief state b where T7" (v}) is known to
be blocked. Assume Loc(b) = v°. Then the optimal cost for (77 (v°), 0%, t)
at b is computed in H (0, 1,2).

e For k=1,1<Iyand 57 <[y we have
H(1,i,9) = min{ C(TP (0})) + Ppraruy H(L, 0,5 + 1),
w((v?,v1)) + O(TF (19)) + PrraroyH (0,7 + 1,j)} (5.2)

Lemma 5.2.3 H(0,1,1) is the optimal cost for T(v°).

Proof. By backward induction on ¢, j.

e When TP (¢9) .- TP (v)) are all blocked, the vertex v' is de facto
a committing vertex. Therefore, for every k € {0,1} and j < I; + 1,
H(k,ly+ 1,7) is computed using NoExpTreeSolver.
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e When TP (v{) - -- TP (v}, ) are all blocked then T'(v') is blocked. There-
fore, for every k € {0,1}, and ¢« < ly+ 1, H(k,i,l; + 1) is computed

using NoExpTreeSolver as well.

Assume that H(k,i,7 + 1) and H(k,i+ 1, ) hold the optimal cost.

e In order to compute H(0,i,7) for ¢ < m and j < [, there are two
reasonable policies that can be considered. BestAction(0,1,j) is the

first action in a policy that achieves this optimum:

1) Perform TRY (TP*))). With probability Prrar(y0), the tree 77" (v7)
is found blocked, a belief state b with Loc(b) = v is reached, in which
by the induction assumption the optimal cost is H(0,i 4 1,7). This is

for a total cost of

C(T"(0)) + PrearoyH(0,i+1,)

2) Cross (v°,v"), and then perform TRY (T (v})). Then with prob-
ability Prear,1), the subtree T Far(v}) is blocked, a belief state b, with
Loc(b) = v! is reached, in which by the induction assumption the op-
timal cost is H(1,4,j + 1). This is for a total cost of

w((e”,0) + CT" (0])) 4 Prearuy H(L, i, +1)

e Similarly, in order to compute H(1,1,j) for i <y and j < Iy, there are
two reasonable policies that can be considered, and the policy with the
minimum cost is computed in H(1,4,j). BestAction(1,1i,7) is the first

action in a policy that achieves this optimum.

J
TP (v;) is found blocked, a belief state b, with Loc(b) = v' is reached,

in which by the induction assumption the optimal cost is H(1,7,7+1).

1) Perform TRY (T (v})). With probability Prrar (), the subtree

This is for a total cost of

C(TPGT(U}'» + PTPQT(U%)H(l,i,j + 1)

69



5. The CTP on Trees

2) Cross (v°,v'), and perform TRY (TF"(v)))). With probability Preer (0,
the subtree TP (v?) is blocked, a belief state b, with Loc(b) = o°

is reached, in which by the induction assumption the optimal cost is
H(0,i+ 1, 7). This is for a total cost of

w((vou Ul)) + C(TPOH"(UZQ)) + PTP‘”(U?)H<07 7’ + 17])

We can now prove the following theorem.

Theorem 5.2.4 1-Ezp-CTP-Tree admits a polynomial time solution when

the edges adjacent to the exploration vertex are known to be unblocked.

Algorithm 2: OneExpTreeSolver(v)

BestAction = NULL, BestCost = INF;
if v=1 then
| return (NULL,0) /*target reached, cost O, no actionx/

if v is a parent of an exploration verter then

BestCost <+ M;
17PTPQT(U)

BestAction < BestAction(0,1,1);
| return (BestCost, BestAction)
else
N, < the children of v;
foreach verter u € N, do
C'(u) +
(1 —p((v,u))) <(1 + Pry)w((v,u)) + OneExpTreeSolver(u));

D'(u) ¢ =S,

1_PTPar(u) ’
sort N, to an array {z1,--, 2} in non-decreasing order of D’(z;);
BestCost <= 3¢ [[o<i Prear(.,)D'(2);
BestAction < move(v, z1);
return (BestCost, BestAction)

To prove Theorem [5.2.4] we provide an algorithm called OneExpTree-
Solver (see Algorithm [2), which is similar to NoExpTreeSolver. One-
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ExpTreeSolver(s) computes the optimal cost of a 1-Exp-CTP-Tree T' in
polynomial time, and returns the first action in a policy that achieves this op-

timum. The correctness of OneExpTreeSolver is a direct result of Lemma
5.2.3, and Theorem [5.1.1}

Note that by slightly modifying Algorithm [2f to cover cases where the
edge (Parent(v),v) is found blocked, one can easily extend Theorem [5.2.4]
to 1-Exp-CTP-Trees where the edge (Parent(v),v) is unknown.

As NoExpTreeSolver takes O(n?logn), computing the table H can be
done in O(n*logn). As OneExpTreeSolver is called recursively once for
every vertex v € T, in which either the table H is filled (only once), or
NoExpTreeSolver is repeated, the total run time of OneExpTreeSolver
is O(n*logn).

5.3 Optimal policy for EFC-CTP-Tree

Recall that a balanced tree is a tree in which every two vertices of the same
depth have the same height. Denote the factored cost of a tree T' by D(T).
Equal Factored Cost CTP-Tree (EFC-CTP-Tree) is a CTP-Tree T in which
T is balanced, and D(TT% (v)) = D(T?% (v')) for every vertices v,v’ in the
same depth. We prove that there is an optimal policy in EFC-CTP-Tree
that is committing for every subtree; therefore every instance is an instance
of 0-Exp-CTP-Tree to which a polynomial time appears in Section ﬂ We
first show that a special case of EFC-CTP-Tree, called Identical-CTP-Tree,
admits a polynomial time solution. Next, using similar methods, we show
that EFC-CTP-Tree admits a polynomial time solution as well. Although
the latter results subsume the tractability of Identical-CTP-tree, proving the

former simplifies the proof.

4In fact, in this specific case, every committing policy turns out to be an optimal policy.

71



5. The CTP on Trees

5.3.1 Polynomial time solution for Identical-CTP-Tree

Identical-CTP-Tree is a CTP-Tree T' in which 77" (v) and TP (v') are iden-
tical for every two vertices v, v’ of the same depth E] Note that every Identical-
CTP-Tree is EFC-CTP-Tree. By Lemma (see Appendix [E)), we have
that D(TT (v)) = D(TT* (v")) even if (Parent(v),v) is known to be un-
blocked (and (Parent(v'),v') remains unknown) . In this section we assume

that the only zero cost edges are the terminal free edges in T.

Claim 5.3.1 Let T be an Identical-CTP-Tree. Then there is an optimal

policy which is T (v)-committing for every vertex v.

Proof: By induction on the height of the vertices in 7. If v is a leaf (of
height 0) in 7', then it is optimal to traverse the terminal free edge (v,t)
for zero cost. Assume that there is an optimal policy which is T2 (v)-
committing for every vertex v of height h — 1.

Let m be an optimal policy for T'. Let z € T, be a node where L(z) = b, in
which for a vertex v of height h, z is a first departure point of T'(v) through
v. We show that T'(v) must be blocked in b. Note that by Claim [2.3.1], m, is
optimal for the sub-instance of T" with an initial belief state b.

Assume in contradiction that T'(v) is not blocked. Then 7, can be infor-
mally described as follows. Traverse a subgraph 7" of T" distinct from 7'(v);
if v is retraced, perform TRY (TT% (v')) for a child v’ of v; if TT (V') is
blocked, retrace to v and continue with an optimal policy; see Figure

Note that this traversal of T in 7, can be described as a macro-action,
which we denote by T'ravel(T"). The result of Travel(T") is either reaching ¢
or retracing to v with a probability P”". Denote by B/*!(T") the set of belief
states, with location v, reached by performing T'ravel(T’) in b. Note that
T' need not be blocked in a belief state of B/%(T"). Then, as Tt (u) and
TP (u') are identical for every u, ' children of v, we can make the following

assumption.

Assumption 5.3.2 There is a child u of v such that TY*"(u) is not known
to be blocked, and such that m,(b') = TRY (T* (u)) for every b’ € B/(T").

°The default edge (s,t) is not considered a part of T
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T/

N

U1 Vg v

TPaT(,U/)

Figure 5.7: Identical-CTP-Tree. The vertex v is of height h. The ver-
tices v’,v1,v9 are of height h — 1. The gray lines mark the subgraphs T’
of T, for which Travel(T") can be performed from v, and TP (v') for which
TRY (TP (v')) can be performed from v as well.

Denote the expected cost of Travel(T') by CT'. Let D" = 1?;;,. As T’
and 7T (v) are distinct, we can define, as in Section [4.2.2) a policy mj for
Ty, obtained from m,, in which Travel(T") and TRY (T (v')) are switched.
Then by the same argument as in Lemma [1.2.3] we have that C'(m}) < C(m)
iff DPor(v') < DT" (see Remark for the case when PT" = 1). We then
show that DFe"(v/) < DT" (see Lemma in Appendix [E| for details);
therefore C(m}) < C(m,) contradicting 7, being optimal.

O

73



5. The CTP on Trees

With Claim being proved, the following theorem is immediate:
Theorem 5.3.3 Identical-C'TP-Tree admit a polynomial time solution.

Proof: Let T be an Identical-CTP-Tree. Then by Claim [5.3.1] there is
a vertex-committing policy (that is, a policy which is committing for every
vertex) 7 that is an optimal policy for T'. Therefore we can consider T as
a 0-Exp-CTP-Tree, and run NoExpTreeSolver to find an optimal vertex-
committing policy 7* on T. As both 7 and 7* are vertex-committing, then
C(m*) < C(m). However, as 7 is optimal, then C'(7) < C(n*). Therefore
NoExpTreeSolver returns an optimal policy for T, and a first move in a
policy that achieves this optimum.

O

In fact, as NoExpTreeSolver sorts the children of every vertex by the
factored cost, which in this case is equal, we get that every committing policy
for Identical-CTP-Trees, and for EFC-CTP-Tree, is optimal.

5.3.2 Polynomial time solution for EFC-CTP-Trees

Proving that Identical-CTP-Tree admit a polynomial time solution, we next

move to the more generalized EFC-CTP-Tree.

Theorem 5.3.4 EFC-CTP-Tree admit a polynomial time solution.

As in Section [5.3.1], the following theorem is immediate from the following
claim, which is a generalization of Claim [5.3.1}

Claim 5.3.5 Let T be an EFC-CTP-Tree. Then there is an optimal policy

that is T (v)-committing for every vertex v.

Proof: The proof is very similar to the proof of Claim [5.3.1] The only
difference is that in EFC-CTP-Trees, Assumption is not obvious at
all, since if uy,uy are children of v, then TF% (u;) and TF (uy) are not
necessarily identical, and therefore the choice of which next child to "try”

can be dependent on the status of edges that are revealed in Travel(1").

74



5.3. Optimal policy for EFC-CTP-Tree

Therefore we do as follows. Recall that L(z) = b, where z € T, is a first
departure point for T'(v) and v is a vertex of height h. Assume in contra-
diction that 7'(v) is not blocked. Then the possible actions in b are divided
into two types: The first type, called try-child actions, is TRY (TT%" (u)) for
a child v of v. The second type, called try-graph actions, is to traverse a
subgraph of T', distinct from 7'(v), in which the outcomes are either reaching
t or retracing to v. We denote these actions by Travel(T"), and denote the
set of belief states reached after Travel(T") is performed in a belief state b,
in which v is reached (with probability PT"), by Bf%(T").

Therefore we can describe 7, as a stochastic (finite) sequence of subgraphs
{G(d;)|i < k}, for some k > 0 (the length of the sequence is stochastic as
well). We have dy = b and d; € B’ (G(d;_,)). For every i > 0, n(d;) is
either a try-child macro-action, and then G(d;) is a subgraph of 7', distinct
from T'(v), or 7(d;) is a try-child macro-action, and then G(d;) = TP (u)
for a child u of v.

As T is assumed to have a default edge (s,t), then in every stochastic se-
quence of graphs the last subgraph is a subgraph of 7', distinct from 7'(v). As
in any traversal of a subgraph, at least one unknown edge is being observed,
there is a belief state d reachable from B(b, ), such that the stochastic se-
quence of graphs {G(d;)|1 < i < k} starting from d (then d; = d) looks as

follows.
e G(d,) is a subgraph of T', distinct from 7T'(v).

e For every dy € B/*!(G(d,)), the policy 74, is a permutation of try-
child macro-actions. Once T'(v) is found blocked, a (final) try-graph

macro-action is performed.

From Claim [2.3.1] we have that 7y, is optimal for 7g,, and 74, is optimal
for T3,. Therefore 7y, is a sequence of macro-actions of distinct graphs,
and we can follow the partition framework (see Section [£.2.2). Hence by
Corollary and as the D(T7 (u;)) are the same for the children u; of
v, we can assume that there is a designated child u of v such that in every
dy € BI*(G(dy)), m(dy) = TRY (TP (u)). Therefore Assumption is

verified.

5



5. The CTP on Trees

We proceed as in Claim and construct a policy 7 from 74, in
which TRY (T"(u)) is switched with Travel(T"), and continue exactly as
in the proof of Claim m to show that C'(m), ) < C(my,) contradicting the
optimally of 7y, .

O

5.3.3 Factored-cost conjecture

We explore a relation between the factored-cost of a sub-tree, the cost of the
higher layers, and the approximation ratio of a CTP instance. Figure [5.8
depicts two layers of a CTP-Tree T

Figure 5.8: Two layers of a CTP-Tree. The grey lines indicate the macro-
actions TRY (TP (u)) and Travel(T").

Assume that the agent is at vy, and the agent can either try a subtree
TP (u) for a child u of vy or cross (v, v;) for a cost w((v,v;)), and perform a
Travel(T') macro action, in which 7", a subtree of T' disjoint from T'(vy), is
traversed for an expected cost C’. The vertex v; is retraced with some certain
probability P’ < 1. Following the analysis in Sections and [5.3.2] it is

optimal for the agent to traverse a subtree 77 (u) if and only if

w((v, 1)) + €+ Pw((v, v1))

DT (w)) < -

< w((v,v1))
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Based on this analysis, we can make the following conjecture, to which

we perform experiments in Section [5.4

Conjecture 5.3.6 Let N, be the children of vertexv in a CTP-Tree T'. Then
the optimal cost for T is the optimal committing cost if for every vertex v # s

we have

max{D (TP (u))} < w((Parent(v),v))

UGN’U

5.4 Experimental Results

The results in Section leave a gap that can be examined empirically w.r.t
the relation between optimal committing policies and optimal policies. The
objective in our experiments is twofold. In the first experiment, called Like-
lihood of commitment, we compare optimal committing policies w.r.t. op-
timal policies. We show an example where the cost of an optimal committing
policy is exponentially worse than the cost of an optimal policy. However,
we believe that for a uniformly sampled CTP tree, an optimal committing
policy is indeed optimal among all policies.

In our second experiment, called Comparing factored-cost, we com-
pare the factored-cost of the trees w.r.t the optimal committing policies. We
believe that the gap between the factored-cost of the subtrees is proportional
to the inability of an optimal committing policy to approximate an optimal
policy.

Recall that the cost of an optimal policy is called the optimal cost. The
cost of an optimal committing policy is called the optimal committing cost.
We first show the following example in which the optimal committing cost is

exponentially greater (in the size of the problem) than the optimal cost.

Example 5.4.1 Figure[5.9 s constructed with low cost unblocked edges (s, v;)

s

to allow the agent to ”‘visit”” subtrees. In addition, there are zero cost edges
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(v, u;) with a blocking probability of 1/2 to "‘lure”’ the agent into the sub-
trees, and very expensive always unblocked edges to encourage the agent to
test other subtrees. In a committing policy, once w.l.o.g. (s,v1) is traversed,
the agent is bound to cross the expensive edge (vi,w;) after revealing the
cheap adjacent edge (vi,uy) to be blocked. Therefore the optimal committing
cost is W/2+ 1. However, in an optimal policy, the low cost edges (s, v;) en-
able the agent to try another subtrees TY" (v;), and cross an expensive edge
only after all the cheap edges (v;,u;) in the graph are found to be blocked.
Therefore the optimal cost is no more than 4+ (1/2)"'W(n — 1).

U1 w1 U2 w2 us w3 Unp, Wn,

Figure 5.9: CTP-Tree. The optimal committing policy has a cost of W/2+1,
while the optimal policy has a cost of no more than 4 + (1/2)"'W(n — 1).

We conduct our experiments on a balanced tree as shown in Figure [5.10}
The edges (s,r;) are called the first layer, the edges (r;,v;) are called the
second layer. The edges (v;,u;) are called the cheap-edges, the edges (v;, w;)
are called the erpensive-edges. Unless mentioned otherwise, all edge costs
and blocking probabilities are uniformly distributed.

Next, we constructed specific CTP models based on the CTP graph lay-
out from Figure (.10} see Table 5.2l In model C all the edges are uni-
formly sampled from the same cost and blocking probability intervals. Mod-
els D EF.E1,E2.F1, and F2 were constructed by having first and second
layers with low cost and small blocking probability. Models I1, 12, and I3
follow Example [5.4.1] Specifically, these models have cheap first and second

layers, and in addition a low cost, cheap edge to ”‘lure”’ the agent into the
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5.4. Experimental Results

Uo wWo Uy wi U2 w2 us w3

Figure 5.10: CTP-Tree. The edges (s, ;) are called the first layer, the edges
(r;,v;) are called the second layer. The third layer is composed of the so
called ”‘cheap-edges”’ (v;, u;), and the so called ”‘expensive-edges”’ (v;, w;).

subtree, and an additional high cost, expensive edge, to ”"encourage”’ the
agent to visit other subtrees. We have taken 1000 samples from each CTP
Model.

Table 5.2: The CTP models for the CTP graph layout from Figure[5.10} Cost
range appears as (min cost, max cost). Blocking probability range appears
as (min blocking probability,max blocking probability). First layer edges are
always unblocked.

CTP 15 layer 274 ayer cheap-edge expensive-edge
model

cost cost prob. cost prob. cost prob.
C (0,500) | (0,500) | (0.1,0.9) (0,500) | (0.1,0.9) | (0,500) (0.1,0.9)
D (0,5) (0,5) (0.1,0.9) (0,5) (0.6,0.95) | (500,1000) | (0.1,0.9)
E (0, 10) (0,500) | (0.1,0.9) (0,500) | (0.1,0.9) | (0,500) (0.1,0.9)
F (0,5) (0,5) (0.1,0.9) (0,500) | (0.1,0.9) | (0,500) (0.1,0.9)
E1 (5,35) (20,60) | (0.65,0.95) | (50,150) | (0.4,0.8) | (50,150) (0.4,0.8)
E2 (5,35) 40 0.8 100 0.6 100 0.6
F1 (0, 10) (0,10) | (0.65,0.95) | (50,150) | (0.4,0.8) | (50, 150) (0.4,0.8)
F2 (0, 10) 5 0.8 100 0.6 100 0.6
I1 (0, 10) (0,10) | (0,0.2) (0,500) | (0.2,0.8) | (500,1000) | (0.4,0.8)
12 (0, 10) (0,10) | (0,0.2) (0,500) | (0.2,0.8) | (1000,2000) | (0.4,0.8)
13 (0, 10) (0,10) | (0,0.2) (0,1500) | (0.2,0.8) | (100,2000) | (0.4,0.8)
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5. The CTP on Trees

Likelihood of commitment We explore the likelihood that an optimal
committing policy is indeed optimal. Our results appear in Table [5.3. The
committing ratio is the ratio of samples in which the optimal committing
cost is the optimal cost. The approrimation ratio is the ratio between the
optimal committing cost and the optimal cost. Our results show that when
all the edge weights and blocking probabilities are uniformly distributed over
(0,500) and (0.1,0.9), respectively(model '), then the committing ratio is
0.999. The approximation ratio among the non-committing samples is 1.014.
In fact our results show a maximum approximation ratio of 1.015, even in
models with a low committing ratio (Models D,E F', and F'1). Furthermore,
our experiments show that although the committing ratio was extremely low
(0 on models Iy, I, and 0.02 on I3), the maximal approximation ratio was
1.299 (model 13).

Another part of our experiments was to separate Identical-CTP-Trees
from the more general EFC-CTP-Trees. However, our experiments showed
no significant difference in the committing ratio and the approximation ratio.

To test Conjecture [5.3.6] we have sample model D in a search for a
counter-example. Such counter-example would be a sample in which the
optimal policy is non-committing, yet there is a vertex w, such that the
factored-cost of 7% (u) is bigger than w(Parent(u),u). After running over

5000 samples, no such counter-example was found.

Table 5.3: Results for the CTP-model samples from Table [5.2]

CTP model | committing ratio | approximation ratio
C 0.999 1.014
D 0 1.015
E 0.984 1.001
F 0.109 1.004
E1 1 1
E2 1 1
F1 0.989 1.00002
2 1 1
11 0 1.134
12 0 1.299
I3 0.02 1.2904




5.4. Experimental Results

Comparing factored-cost We tested the factored-cost of the trees w.r.t.
the approximation ratio. To do that we define the factored-cost gap as follows:
Denote the vertices in depth i by V (i), and denote the factored-cost of every
v e V(i) by D(v,i). Let

. Dl iVt — it (Do i
gap(i) = max {D(v, )} — min {D(v, )}

We define the factored-cost gap of a CTP-Tree instance to be max;{gap(i)}.
Note that a CTP-Tree with a factored-cost gap of 0 is an EFC-CTP-Tree
discussed in Section Table shows the approximation ratio and the
average factored-cost gap for every model with a low committing ratio. The
scatter of the samples for every model appears in Figure 7?7 and ?7. Although
we did not find a significant relation between the factored-cost gap and the
committing ratio, it can be clearly seen that the more the factored-cost gap

grows, the more samples have a higher approximation ratio.

Table 5.4: Results for comparing approximation ratio with factored-cost gap.

CTP model | committing ratio | approximation ratio | average factored-cost gap
D 0 1.015 895.247
F 0.109 1.004 387.066
I1 0 1.134 801.636
12 0 1.299 1693.1506
13 0.02 1.2904 1504.811
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Figure 5.11: Scatter graph for CTP-Models D.
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Figure 5.13: Scatter graph for CTP-Models I1.
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Figure 5.15: Scatter graph for CTP-Models 3.
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Chapter 6

Repeated-CTP

6.1 Repeated CTP in disjoint-path graphs

In this chapter, we generalize CTP to a multi-agent variant where n agents
operate in the given graph. Note that there are many possible communication
and knowledge-sharing paradigms as well as different agent types for multi-
agent systems. Here we assume that the agents are fully cooperative and aim
to minimize their total travel cost. In addition, we assume a communication
paradigm of full knowledge sharing. That is, any new information discovered
by an agent (e.g., whether an edge is blocked or traversable) is immediately
made known (broadcast) to all other agents. This assumption is equivalent
to having a centralized control of all agents. Specifically, we introduce the
Repeated task multi-agent CTP, called Repeated-CTP, and denoted by CTP-
REP(n) for short, in which n agents need to travel from the start state to
the goal state. However, there is only one active agent at each point in time.
All other agents are inactive until the currently active agent reaches t. An
agent that reaches t becomes inactive again (is “out of the game”), and can
make no additional actions or observations. The goal is a natural extension
of single-agent CTP: all n agents begin at s and must reach ¢t. We need
to find a policy for the agents that minimizes the expected total travel cost
of reaching this goal. The content of this chapter was published in [7]. A

journal version was recently submitted as well.
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6. Repeated-CTP

6.2 Repeated CTP in disjoint-path graphs

We extend the results on single-agent disjoint graphs CTP from Section [2.5]
to the case of repeated CTP with n agents, CTP-DISJ-REP(n). We show
that in CTP-DISJ-REP(n) there exists an optimal policy that is committing
for the first (leading) agent, and such that the rest of the agents (the following
agents) follow the last path successfully traversed by the leading agent. This
optimal policy, like the single-agent case, can be computed efficiently by
sorting the paths according to a simple measure, which needs to be adjusted
in order to account for the traversal costs of the n — 1 following agents.
Though apparently simple, proving optimality of such a policy is non-trivial.
The notations in this section are based on the notations of disjoint-path
graphs, see Section [2.5]

Let M be an instance of CTP-DISJ-REP(n) with k paths. Note that any
reasonable policy in M can be represented using only T'RY and I NV macro
actions as follows.

Let TRY (I,4) be the action in which agent A; tries path I;. Let INV (1,4, j)
be the action in which agent A; performs INV (i, 7). When the agent is ob-
vious from the context, we shorten the notation to TRY (i) and INV (i, j)
respectively.

Therefore, given a policy 7 for M, we consider the policy tree T, as
consists on the macro actions T'RY and INV, and therefore contains only
two different types of action-arcs: T'RY -arc, for the macro action TRY, and
INV-arcs for the macro action INV.

A policy that contains only T'RY actions for an agent A; is committing for
A;. Likewise, a policy is committing (for a set of agents) if it consists of only
TRY actions for all these agents. Note that for a single agent, a committing
policy is also committing in the sense of Section 4.2l It is non-trivial to show
that in repeated CTP, TRY actions suffice for optimality — this requires
definition of the constrained followers-committing policies, discussed next.

Let 7 be a committing policy for M, where whenever Ag reaches t through
path I;, the agents Aq,---A,_; traverse I; as well. A policy m with this

property is called a followers-committing policy, and the agents Aq,--- A, 1
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6.2. Repeated CTP in disjoint-path graphs

are said to follow Agin 7. Note that this property allows us to define a multi-
agent macro-action for a path I;, which we denote by T'RY,, (i) and acts as
follows. Ay tries I;. If I; is found unblocked, Ay reaches t and Ay, --- A, _4
traverse I; as well; otherwise, if I; is found blocked, Ay retraces to s (other
agents staying idle). The results of TRY,, (i) are that either a terminal belief
state is reached by having all the agents in ¢ (after traversing I;), or a belief
state is reached in which all the agents A, --- A,_1 are in s and [; is known
to be blocked.

Recall that @); = 1 — P, is the probability that path I; is unblocked.
Denoting the expected cost of TRY,, (i) by E[TRY,(i)], we have:

E[TRY,(i)] = nQ;W; + E[BC(i)] (6.1)

Let 73, be the followers-committing policy where Ay executes the com-

E[TRY,(i)]
4 Qi

mitting policy of trying the paths by increasing order o , and

Al, cet 7An—1 follow AO H

Theorem 6.2.1 7}, is an optimal policy for M.

As the proof is non-trivial, we first present a proof outline, followed by
an example. The complete proof is in Section [6.4}

Proof outline: We first show that 7}, is optimal among all followers-
committing policies for M. Then we continue by induction on the number
of agents, n. For n = 1, M is also an instance of CTP-DISJ. Hence, by
Theorem , 73, is optimal (in fact, with some adjustments, the proof of
Theorem [6.2.1| serves as an alternative proof of Theorem [2.5.3| as well; see
Remark in Section .

We now assume inductively that for every instance M’ of CTP-DISJ-
REP(n — 1), the followers-committing policy 7}, is optimal, and show that
7y 1s optimal for M.

Recall that an I NV -arc is an action arc in 7T is which the action is INV.
Note that T, Tt contains no I NV -arcs.

For n = 1,% is the factored cost for (I;, s,t)
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6. Repeated-CTP

Let 7 be an optimal policy for M, with a minimal number of I NV -arcs
in T}.. If 7 is followers-committing we are done. Hence we may assume that
7 is not a followers-committing policy. Then there are two cases:

(1:) 7 is committing. Then T does not contain I NV-arcs. Assume
w.l.o.g. that Ay tries the paths in 7 in the order of {Iy, I1, - - - Ix_1}. By the in-
duction assumption we may assume that A; executes a followers-committing
policy, hence Ay, - -+ A,,_1 follow A; in m. As 7 is not a followers-committing
policy, we may assume that A; does not follow Ay. Then we can show that
there is a path I, such that

E[TRY,(m+ 1)] _ E[TRY,(m)]
Q1 Q@m

We can then define a policy 7’ that is the same as 7, except that I, ;1 is
tried right before I,,, such that C(n") < C(w), contradicting the optimality
of 7.

(2:) 7 is not committing. We can then show that 7 contains a sub-
tree, T', with only one INV-arc, and define a policy 7/, which is obtained
from 7 by replacing T" with another tree, 7", which has no INV-arcs at
all. We then show that C(7") < C(m), contradicting the minimal number of
INV-arcs in T, among the optimal policies of M. O

Example: Consider Figure We have ZIEENO] 39.5, and )] —

Qo Q1
2.6. Hence by Theorem the optimal single agent policy is committing
to try path I; before I,. However, w = 95 and % = 95.1,

hence for n > 38 agents, the optimal policy is for the first agent to try path
Iy before I;, and for the other agents to follow the first agent’s path to ¢.

6.3 Interleaved-action CTP in disjoint-path
graphs

We briefly consider interleaved action CTP in disjoint-path graphs (CTP-
DISJ-MULTI(n)), in which agents can start moving before the first active
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Vo IO

€1 : 0.5/0.95

61,1 : 15‘005

€20 * 10, 000‘0

Figure 6.1: An simple example for CTP-DISJ-REP(n). For n < 38 the
optimal first macro-action for the first agent is TRY (I;). For n > 38, the
optimal first macro-action for the first agent is TRY (/).

agent has reached ¢. In this variant, it is by no means clear that the optimal
policy can be described using only T'RY and INV macro actions. In fact,
it is easy to see that for more general graphs, the optimal policy requires
interleaved actions. For example, see Figure [6.2 which is constructed from
Figure by adding a (certainly traversable) path that costs 100 from v; to
t. The optimal 2-agent policy is to send the first agent to v;, and if e;; is
blocked, send the second agent to vy to check eg;, while the first agent waits
at vy.

Since for disjoint paths this type of scenario cannot occur, we are led
to suspect that there is no advantage to having more than one active agent
at a time in this topology. This instance was empirically checked in [7]
by generating the optimal policies (using value iteration) with and without
interleaved actions for small randomly generated problem instances. From
hundreds of such non-disjoint-path instances, more than 10% of the cases
required interleaved actions to achieve the optimal policy. Conversely, in all
of over a thousand such disjoint-path graph instances, the optimal policy for
CTP-DISJ-REP(n) was also optimal for CTP-DISJ-MULTI(n). Hence we
state the following:

Conjecture: Every optimal policy for CTP-DISJ-REP(n) is also optimal
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€1 : 0.5/0.95

€20 : 107 OOO|O

Figure 6.2: A CTP-DISJ-MULTI(n) example in which the optimal policy
requires interleaved actions. Edge label w|p denotes edges cost w, blocking
probability p.

for CTP-DISJ-MULTI(n).

6.4 Complete proof for Theorem [6.2.1

We begin with some definitions and notations. If an agent traverses a path I;
and reaches ¢, we say the agent has successfully traversed I;. As every belief
state is defined by the probability function p over the edges (with b(e) = p(e)
for every e € E), we can denote the expected cost of the macro action
TRY, (i) in a belief state b, by Ey[TRY,(i)]. Furthermore, as the status of
the edges of a path I; is belief state dependent, we denote the probability
that [; is unblocked in belief state b by Q@) (thus @) = @;), and define

Qiv)

For conciseness we denote D!(by) by D! and in particular denote D} by
D;. Note that

D}(b) = (6.2)

pr - FECOL 03

hence D; > W;, and for every [ < n we have:
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6.4. Complete proof for Theorem [6.2.1

D! = D+ (n — D)W, (6.4)

Finally, recall that an action-arc in T, that represents an I NV action is
called an INV -arc. Note that T,T;«M contains no I NV-arcs.

In order to show that 7}, is optimal, we first show that 7}, is optimal

among all followers-committing policies.

Lemma 6.4.1 Let 7 be a followers-committing policy for M. Then C(m},) <
C(m).

Proof: Every followers-committing policy 7 for an instance M of CTP-
DISJ-REP(n) can be re-cast as an equivalent CTP-DISJ problem instance
M'. This is done as follows. M’ extends M by adding, at the end of each
path I;, an additional traversable edge e;,, incident on ¢ and bearing a cost
of (n — 1)W;. In a followers-committing policy for M, all agents follow the
first agent, and all incur a cost of W;. Thus there is a bijection F from
followers-committing policies in M, to committing policies in M’, that pre-
serves expected costs, therefore C'(m) = C(F(w)). Now suppose that 7 is
a followers-committing policy for M. By Theorem (but see Remark
[6.4.5)), F(m},) is optimal for M’, therefore C'(F(r},)) < C(F(r)), which en-
tails C(m},) < C(m). O

Next, we prove that 7}, is optimal among all policies for M. The proof
goes by induction on n, the number of agents in M. For n = 1, M is an
instance of CTP-DISJ-REP(1) that is also an instance of CTP-DISJ. Hence,
by Theorem , 74, is optimal (in fact, with some adjustments, the proof
of Theorem [6.2.1] serves as an alternative proof of Theorem [2.5.3| as well; see
Remark at the end of this proof). We now assume inductively that 7},
is an optimal policy for every instance M’ of CTP-DISJ-REP(n — 1), and
show that 7}, is optimal for M.

Let m be a policy for M that is not followers-committing. Assume in
contradiction that 7 is an optimal policy in which the number of I NV -arcs in

T, is minimal. We show that there is a policy 7’ that leads to a contradiction
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in the following way: either C (') < C'(7), contradicting 7 being optimal, or
otherwise C'(n') = C(m) and the number of INV-arcs in T, is smaller than
those of T}, contradicting the minimality of the number of INV-arcs in T.

We then have two cases to consider:

(Case 1:) 7 is committing. Then 7). contains no I NV-arcs. Assume
w.l.o.g. that Ag tries the paths in 7 in the order of (Iy, [1, -+ ,Ix_1). By
the induction assumption we assume that 7 is followers committing for Aq,
meaning that in 7 the only actions for A; are TRY actions, and As,--- ; A, 1
follow A;. Therefore, as we show below in Remark [6.4.2] we may assume
that after Ay has reached t through a path I;, there is a unique policy for
Ay -+ Ay, called 7;, which is independent of the edges which were found
blocked in the "previous” paths I; for [ < j. Then, every committing policy
7 can be described as follows (see Figure for an example). Ay tries the
paths in the order of (Iy, I, -, I;_1); once Ay has successfully traversed a
path I;, then in 7;, the agent A; tries the paths in {I;,--- ,I;_;} in a certain
permutation (note that I; is known to be unblocked). These permutations
fully describe the policy since As, - -, A,_1 follow A;. Note that the policies
(permutations) 7; are truncated as TRY (1, j) always succeeds in 7; and no

additional paths are tried.

Remark 6.4.2 Formally, let B; be the collection of all possible belief states
that label a node in Ty with an incoming TRY (0, j)-arc, and in which Ay
is in t. Note that in these belief states, I; is known to be unblocked hence
Dy=H(b) = (n — 1)W; for every b € Bj; Iy is known to be blocked for every
[ < j hence Dl”_l(b) = oo. Finally, as the I; are not yet traversed for every
I > j, we have D' (b) = D}"'. Therefore we can define 7; to be the partial
policy of m starting at every such belief state b € B;.

Note that if A; always follows A in 7, then 7 is a followers-committing
policy and we are done. Therefore we assume there is an optimal policy, in
which there is a path successfully traversed by Ay and is not first tried by A;.
We then intend to show, as facilitated by the following lemma, that there is
a path I,,, for which D}, ., < D}
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I
Ao ‘ TRY(l)Fq TRY(z)} £ =‘ TRY (3) Fﬁ‘ TRY (4) ‘; TRY (5)
s s s s S
Cmo L m H T R R sl
| | F F | | )l
A ‘ TRY (1) “ l‘ TRY (4) H TRY(3) ‘*‘ TRY(2) M TRY (3) m TRY (5) F% TRY (4) “ | ‘ TRY (5) ‘:
| ¥ L
| !

Figure 6.3: An illustration of a committing policy. The boxes indicate the
actions taken in every belief state. The directed arrows indicate the outcome
of such actions where S indicates that the agent Ay has reached t through a
certain path, while F' indicates Ag has found that path blocked and retraced
to s.

Lemma 6.4.3 If D} < D? then (n—1)W,; < D}~" for every n > 2.

Proof: Assume in contradiction that (n — 1)W; > D7~'. Note that
Dy~ = Dj+ (n—2)W;, and D; > W;, implying (n — 1)W; > (n — )W},
hence W; > W,. Then we have D; > W, implying D; > W;, and as
(n—=1)W; > D}~", we have D+ (n—1)W; > D}~' +Wj, therefore D" > D7,

a contradiction. O

Now assume that D} < D}, for every path I;. As for every path I;, every
b; € B; and every | > j, we have D}~ '(b;) = (n — 1)W;, and D}~ (b)) =
D' we have by, Lemma m, that 7(b;) = TRY(1,j) which means A,
follows Agy. Hence 7 is a followers-committing policy in contradiction to our
assumption. Therefore, as we assumed that all the D, are different, we have
D; > D;,4 for some 1.

Let I, be the last path such that D} > Dy | (in the example in Figure
, the path I, is I;). Let ' be the policy obtained from 7 by switching
TRY (0,m) and TRY (0,m + 1). We show that C'(7’) < C(m).

To write down the expected cost C(m) and C'(7’), we need the following

observation. Note that m can be represented as a sequence of conditional
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operations for the paths, such that in each operation, Ag tries a path I;, and
either I; is traversed successfully and A; executes 7, or I; is found blocked

and Ay returns to s. Therefore the expected cost of 7 is

C(r) = Z(H Pe)Qi(Dy + C(m)) (6.5)

<k c<l

and explicitly we have

C(m) = > (II P)Qu(Di + C(m))+

l<m c<l

( H P)Qm(Dm + C (7))

c<m

H P QO+1 Dm+1 + C(ﬂ'erl))

+ > (IIP)QuUD: + C(m))

m41<i<k c<l

and

C(r) =Y _(J] P.) QD + C(m)))+

I<m c<l

(H PC)Qm-I-l( m+1 + C( m+1))

c<m

H P m—l—lQm m 1 C(ﬂ-;n))
+ > (I P)Q(D:+C(m)

m+1<i<k <l

Note that C'(m) = C(n)) for every | < m, and every [ > m + 1. We show

that C(mp41) = C(7,11). As m < m+ 1, and for every | > j > m, we
haveDy > D7, it is implied from Lemma that

C(Tmi1) = (n—1)Wi,q1. On the other hand, as D, < D7 then, again by

Lemma m, (n — 1)W1 < D71 Hence if Ay successfully traverses I,

in 7', we may assume that A; follows Ay, so C(m),.;) = (n—1)W,,41 as well.

Then, as D} 1 = Dp1 + (n — 1)Wy 41, we get the following property:
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Property 1
C(n') < C(m) if and only if

Qm+1(DZZ+1 - Dm) < C(Wm) - Pm—i-lC(W;n)

Let 1, be the first path that A; tries in m,, (for example in Figure [6.3]
I, is I5). Obviously, the last path that A; tries in m,, is the unblocked path
I,,. Note that once Ay successfully traverses I,,, in 7/, A; tries the remaining
paths in the same order as in 7,,, skipping I,,,+1, which is already known to
be blocked. We then have two cases to consider of whether 1,,, .1 precedes I,,
in m,. For each such case we show that C'(7') < C(m).

For example, in Figure[6.3] I,,, is I, and I,,41 is 5. The first action in 7,
is TRY (5). Hence A; tries I5 in m,,, before traversing I, which was already
successfully traversed by Ay (hence known to be unblocked).

To handle the two cases we need the following technical lemma.

Lemma 6.4.4 D), , < D, + D;‘_l

proof: First observe that W, < D,,. Note that in m,,, [, is tried before
Iy, implying Dp~' < (n — 1)W,,. Therefore, as D;~! = D, 4 (n —2)W, and
as W, < D,,, we have (n—1)W, < (n—1)W,, which entails W, < W, < D,,.
Now, m + 1 < y implies D}, < Dy. Then since D = W, + Dj~" and
W, < D,,, Lemma follows. O

Case 1.1: [, precedes [, in mp,.

Therefore in ], A; tries exactly the same paths and in the same order
as in m,,, which implies C'(7,,)) = C(mp,).

In addition, as the first path that A; tries in 7, is I,, we have that
Dp~' < C(my). Then from Lemma we have D7 < Dy, + C(7,).
Therefore, as C(n),) = C(my,) and as Qmi1 = 1 — Pypq1, we have from
Property 1 that C(n") < C(m).

Case 1.2: [, precedes I, in 7,,,. Denote the order on permutation m,,

by <,,. Then we have

95



6. Repeated-CTP

Clrm) = > (][ Py@Dr™

I<mmA41 h<'l
+( I Pu)QumaDii
h<mm+1
+ > (Il P)QD "+ (I Pu)n—1)W,, (6.6)
m+1<ml<mm h<’l h<mm

As I,,, 11 is already known to be blocked, whenever executing 7/, we have

Cm,) = > (1] Po@QDp™!

I<mm+1 h<ml

1
+ 5 >, (Il Po@Dr='+
m+l 1<, l<mm h<pl
1
5 —(II P —1W, (67)
m+l p<,m

Hence

C(ﬂ—m) - Pm—i—lc(ﬂ—:?v,) =
( H Ph)Qm-l—lDZ@_—&-ll

h<mm-+1

+ Qi1 Z ( H P)QD} ! >

I<mm+1 h<pl

( II P+ > (Il PO@=

h<m,m+1 I<mm~+1 h<mnl

Qm D)~ (6.8)

where Equation occurs because [, is the first path that A; tries in
both 7, and 7/ ; therefore D! > D?’J*l for every [ >™ y. Equation is
due to the fact that

S (I P+ [ P.=1

I<mm+1 h<ml h<mm-+1
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6.4. Complete proof for Theorem [6.2.1

Then, from Lemma we get D), — Dy, < D;“l, and applying
Property 1, we get C(7') < C(m).

(Case 2:) 7 is not committing. Then 7} contains I NV-arcs. We find
another policy 7’ such that C'(7") < C(7) and T} contains a smaller number
of INV-arcs than T}, thus contradicting the minimality of the number of
INV-arcs in T, among optimal policies.

By the induction assumption, 7 is a followers-committing policy for Ay, - -+ A,,_1;
therefore the only INV actions in 7 are for Ay (see Figure for an ex-
ample of such a non committing policy). The last action before Ay reaches
t must be a TRY action. Hence T} contains a subtree with a root with a
label b, called T,, such that w(b) = INV (0,1, j) for some i < k, j < k;, and
7(b) is the only INV-arc in Ty,. Assume without loss of generality that no
paths are known to be blocked in b, and that the paths are ordered by the
non-decreasing order of the D! (b).

Let 7, be the optimal followers-committing policy starting at b (meaning
the optimal followers-committing policy for Mj). Note that T7; contains no
INV-arcs at all.

We first show that C(m;) < C(m,). Next we define 7’ to be the policy for
M obtained from 7 by replacing m, with 7. As the number of NV -arcs in 77,
is smaller than in 7}, and as C'(m;) < C(m), we have that C(7') < C(7), and
T contains a smaller number of I NV-arcs than T, violating our assumption

of a minimal number of INV-arcs in 7.

To see that C'(m;) < C(m), first note that

C(m) = > (1] P.)QiD} (b) (6.9)

0<i<k z<l

(a product over a zero term is defined to be 1).

To develop C(m,), we make the following observation. Recall that the
outcome of all INV (0,4, j) actions is that Ag is at s. Let by, for [ < j, be the
belief state reached as the outcome of the action INV (0,1, j) performed at b,
in which the edge e;; is found blocked. Let b* be the belief state reached as
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6. Repeated-CTP

the outcome of INV(0,4,j) executed at b in which e; ; is found unblocked.
Using this notation, m, can be described as follows: ezecute INV (0,1, j);
if €;1 1s found blocked for some | < j, execute m,; otherwise execute my-.
For example, Figure describes a policy for Ay in a CTP-REP in-
stance with 4 paths in which the last INV-action is INV (14, 3). If ey ;, for
J < 3, is found blocked, the followers-committing policy m, is executed. If
eq 3 is found unblocked, the followers-committing policy m« is executed. The

alternative policy in which 7, is replaced with a followers-committing policy
is seen in Figure |6.4(b)|

| U
e3o = unblocked eq,3 = unblocked b

Ao

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(a) An illustration of a non-committing policy. F indicates agent Ay has found a certain path blocked and
retraced to s. The rest of the agents are assumed to follow Aj.

e3 o = unblocked B -
Ao TrRY(1) L INV(3,2) TRY(2) TRY(3) | —» TRY(4) |

(b) An illustration of an alternative policy for the policy in Fig, [6.4(a)| in which 7, is
replaced by a followers-committing policy. The rest of the agents are assumed to follow Ay

Figure 6.4:

For an edge e;, let Q] := [1.<j q(€eix) be the probability that the edges
{€io,- - .€;i;} are unblocked. As neither the T,rbl nor Tr,. contains an INV-
arc (thus the m,, and m,» are committing policies), we may assume without
loss of generality, by Case 1 (in which we have shown that there is an optimal
followers-committing policy among all committing policies) that the 7, and
7y« are followers-committing policies.

Note that Dj*(b,) = D}'(b;) for every h < j, and D}(b;) = Dj(b*) for

every | # 1. Therefore, as the same paths are blocked in both m, and m,,
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6.4. Complete proof for Theorem [6.2.1

we have that C(m,,) = C(m,) for every h < j. Therefore:

C(m) = QI2Wi; + C(m)) + Y E[BC,(i)] + (1 = Q)C(m,)  (6.10)

z<j

The expected cost of m, is easily shown to be:

Cm) = Y ([ PIQDIE) + 5 3 ([T PIQDIE)  (6.11)

0<i<i =<l i<k x<l

The development of C(m+) is a bit more complicated. This is because in
b*, some of the edges of path I; are known to be unblocked; hence, in -,

the path I; may be tried sooner than in 7, .

Therefore we proceed as follows. For z < k; let E[BC, ()] be the expected
backtracking cost given that e;, is unblocked for every y < z, and given that
e; . is blocked. Recall that g(e) is the probability that edge e is unblocked,

giving:

[Tj<e<t; 4(€iz)

D} () +nW;

hence

Ya<j E[BC.(i)]

Dy(") = Di) - =27

(6.12)

Therefore D (b*) < D(b).

Now let I,, be the first path such that DI'(b*) < D (b) < D!(b). Then

we have:
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6. Repeated-CTP

C(my) =
> ([ P@Dio) -+ (1] Px>g;iD?<b>+
(1= %) S (ML P)@Dy()+
()1 %) Y ([TPIQDIB) (613)
? ioa<l<k x<l
Therefore

Q2Weijs + Y E[BC.(i)]+

QDA O)(T] P~ T[ Po)-
Qi Y ([T P.)Q:D}(b) (6.14)
m<l<i x<l

As D(b) < D(b) for every [ < i, and as

S (I P)@i=1I -] P

m<Il<i x<l r<m z<i

we have

C(m) — C(mp) > Q) 2Weiys + 3 E[BC,(i)]

z<j

and as obviously,

Q/2W_i ;> + S E[BC,(i)] > 0

z<j

we have C'(m;) < C(m), as required. 0
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6.4. Complete proof for Theorem [6.2.1

Remark 6.4.5 Note that the proof of Theorem serves as a proof for
Theorem [2.5.5 of a single agent CTP (i.e., for n = 1). As in Case 2, the
number of agents does not play a role, we only need to adjust Case 1 to do
the proper adjustments for n = 1. Recall that for n = 1, there are no agents
to follow Ay. Therefore, in Case 1, the cost of the policy for the following
agents should be set to 0, and the value of all the D} '(b) should be set to 0

as well.
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Chapter 7

Conclusion

7.1 Related Work

In 1989, Papadimitriou & Yannakakis [31] introduced the Canadian Traveler
Problem and showed that an online version of the CTP, in which the ratio
between the optimal solution and the shortest path is bounded, is PSPACE-
complete. Membership in PSPACE and #-P hardness was shown for the
stochastic version. The proof that the CTP is PSPACE-complete (Chapter
Bl and also [14]) closes this complexity gap. One of the techniques we use
in that proof, the use of CTP with dependency (CTP-Dep), was explored
in an M.Sc. Thesis of Doron Zarchi [46] in which heuristic solutions were
considered for CTP-Dep. An alternative preliminary and independent proof
of the result in Chapter [3|appears in a graduate thesis of Cenny Wenner [43],
as well as the complexity of policy representation, which we did not pursue

in this work.

In 1991 Bar-Noy and Scheiber [3] introduced several variants of the CTP.
In one of them, called Recoverable CTP, a blocked edge does not remain
blocked forever, but each vertex v has a recovery time I(v) € [0,00) for the
edges adjacent to v, such that after an edge is revealed to be blocked, the
agent can wait [(v) time and afterward the edge becomes unblocked. Bar-Noy
and Scheiber showed a polynomial time strategy that minimizes the expected

travel time in cases where the recovery time of a vertex v is short - relative
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7. Conclusion

to the travel time of the edges adjacent to v.

Another variant first explored in [3] is the so-called k—CT P, and in which
an upper bound of k£ blocked edges is given as a part of the problem. Bar-
Noy and Scheiber presented a travel strategy, polynomial for any constant
k, which finds the shortest worst-case travel time. They also showed that in
cases where k is not constant, finding such a strategy is PSPACE-complete.
k — CTP was further explored [44], 45].

In 2008, Nikolova & Karger [30] explored another variant of CTP with
the costs of the edges coming from a general known probability distribution .
Nikolova & Karger showed that if the value of the edges incident to a vertex
v is re-sampled every time we reach v, there is a natural MDP that solves this
problem in polynomial time. The problem is also easy to solve in cases where
the graph under discussion is directed and acyclic (DAG). Then, assuming
that all the edges have independent and identical distribution, Nikolova &
Karger showed an optimal policy for disjoint-path graphs. With a further
limitation to (0,1) Bernoulli edges, they also showed optimal policy for binary
trees. Note that this variant of trees is different from the CTP-Tree presented
in Chapter 5

In 2010, Eyerich, Keller, and Helmert [12] introduced and compared sev-
eral heuristics and algorithms for the CTP. Apart from introducing obser-
vations and notations that are used throughout this work, one of their con-
tributions was to consider a state-of-the-art approach called UCT [22], as a
suggested sampling scheme for a CTP solver. This work was later followed
by Bnaya et al. [7], who generalized the UCT algorithm for Repeated-CTP,
and in which the results in Chapter [6] were published. The ”optimistic” pol-
icy, suggested in [7] is based on the ”free-space assumption” introduced in
[23]. Other works on repeated, multi-agent navigation problems appear in
[45], 29, [13].

In 2009, Bnaya, Felner and Shimony [6] showed that the CTP has a poly-
nomial time solution on disjoint path graphs. This result, which this work
lies heavily on, is given in Section and in Chapter [6] Apart from that,
a variant of the CTP with Remote Sensing (Sensing-CTP) was introduced

in [6]. In Sensing-CTP, the agent can reveal the status of a remote edge
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for a non-negative cost. Bnaya, Felner, and Shimony [6] compared various
algorithms which solve Sensing-CTP.

Another variant of Sensing-C'TP called First-Sensing-CTP was discussed
in the M.Sc. Thesis of Olga Maksin [27]. In First-Sensing-CTP, the agent can
only traverse a path known to be unblocked. Therefore, revealing the status
of the edges must be done through sensing actions, prior to any move action.
A variant of First-Sensing-CTP in which all the edges have a move cost 0,
is a special case of a problem known as the Sequential Testing Problem, in
which a system is tested through its components, which are connected in a
graph structure. Every component has a failure probability, and a testing
cost. The objective is to find a policy that minimizes the expected testing
cost of the system [39, 40, B]. Sequential testing is widely explored, and

appears under various names [20, [17].

Variants and related problems. An alternative definition of the CTP
lies in Operation Research. Polychronopolous and Tsitsiklis (1996) [33] have
defined the Independent Stochastic Path Problem with Recourse (I-SSPPR)
in which there is a distribution over the costs of the edges. This problem is
a special model of the R-SSPPR problem, defined in [33], in which a limited
dependency over the cost of the edges is allowed. Dynamic programming
algorithms were presented in [33] for both models, as well as complexity
gaps.

An earlier version of the Stochastic Shortest Path Problem with Recourse
(SSPPR) appears in [2]. The actions allowed in [2] are for the agent to follow
a pre-chosen path from s to ¢, and choose a recourse if and only if this path
has become blocked. A dynamic programming algorithm was presented in
[2] that solves the SSPPR. Our result in Chapter [3| shows that this variant
of the SSPPR is PSPACE-complete as well. In 2003, Provan [34] discussed
various versions of the SSPPR, and suggested a polynomial time algorithm
for cases in which every edge is re-sampled after every move the agent makes.
Other works in which the problem is to find the expected shortest path in a
stochastic network appear in [38] 9, [15] 25| 24] [42].

Generally, navigating in stochastic graphs, or stochastic networks, has
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received a lot of attention. For example, the Online graph exploration [28§]
where the agent must visit each vertex in an unknown graph, or [18], where
certain paths can be quarried in an unknown network. Another problem is
the so called "sabotage game” [21], where an adversary can block edges in a
graph, after every move the agent makes. Another example for network rout-
ing problems with local or global reliability appears in [37]. Other properties
of stochastic weighted graphs can be found in [10].

Finally, a recent variant is the Stochastic on Time Arrival (SOTA) prob-
lem, where a time budget is given for a stochastic network, and the objective
is to find a strategy that maximizes the probability of arriving at the desti-

nation within the specific time frame. This variant was explored in [35].

7.2 Summary and future work

The Canadian Traveler Problem (CTP) formalizes a problem in navigation
under uncertainty. The objective is to find a strategy to reach from a given
source to a given destination where a road can be found to be blocked upon
reaching that road. As the CTP is a problem in decision-making under
uncertainty, we model the CTP as a Deterministic Partial Observable Markov
Decision Process (Det-POMDP). The description of a Det-POMDP as an
AND/OR tree is used for theoretical analysis.

Having shown that the CTP is PSPACE-hard (Chapter 3]), several related
questions on variants of CTP and CTP with restricted topologies arise. One
issue of particular interest is the question of efficiently finding approximately
optimal actions. The proof in Section makes use of rather small gaps
between expected values of two candidate actions, and thus leaves open the
possibility of efficient approximation algorithms.

Studies of the competitive analysis of the CTP reveal rudimentary bounds
on approximability. Denoting by k£ the number of uncertain edges in an in-
stance, there exist for the undirected case polynomial-time algorithms achiev-
ing competitive ratios of 2k 4+ 1 [44]. As a consequence, the stochastic CTP
can be approximated within a factor of 2k + 1. With a slightly improved

analysis, the same algorithm yields a 2n + l-approximation. In the directed
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case, existing results from competitive analysis only yield approximations of
281 4+ 1 and 2"*! + 1, respectively [45].

These approximation algorithms forgo entirely the stochastic nature of
the problem and leave open considerable improvements. A preliminary work
of ours (with Cenny Wenner) shows, by reduction from the {1,2}-TSP [11],
that the CTP is hard to approximate up to a certain constant.

Another variant of CTP that we find of interest is CTP with "reset edges”
(Reset-CTP). In Reset-CTP, the CTP graph is directed acyclic, apart from
always unblocked directed edges, called reset edges, that connect every ver-
tex to s. The motivation is a decision-making system in which retracing
is impossible, except for the possibility to go back to the starting position
(while keeping all the knowledge acquired so far) for a certain cost. A special
variant called 0-Reset-CTP is when all the reset edges have zero cost. A
preliminary work of ours (with Amit Benbassat) shows that 0-Reset-CTP is
PSPACE-complete as well.

The partition framework technique, presented in Chapter [4, can serve to
decompose a CTP-instance into several components, followed by implement-
ing an independent heuristic on each component, thus gaining an overall
improved heuristic. Such a decomposition can be obtained by considering
certain edges to be blocked, at the cost of losing optimality.

The problem of whether CTP-Tree is NP-hard remains open. Solving 1-
CTP-Tree where the outgoing edges of the exploration vertex are unknown,
remains a challenge as well. With minor modification, the algorithm 1-Exp-
CTP-Tree presented in Chapter [5|can be implemented for 1-CTP-Tree with
a constant j number of unknown outgoing edges of the exploration vertex v?.
This is done by constructing 2/ tables; one table for every possible observation
of the outgoing edges of v!. With another minor modification, 1-Exp-CTP-
Tree can be used to solve k-CTP-Tree, where every exploration vertex has
a committing parent, committing children, and committing siblings. The
problem of 2-CTP-Tree where both a vertex and its parents are exploration
vertices is still a challenge.

A possible generalization of CTP-Tree is a CTP with a series-parallel
graph structure (SP-CTP). In SP-CTP, unlike CTP-Tree, a vertex can be
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reached from s through more than one simple path; therefore we believe that
SP-CTP contains more challenges than CTP-Tree. A possible constraint
for SP-CTP is that the agent is not only committed to a certain subgraph,
but must retrace his own steps, once that subgraph is found blocked. The
theoretical and empirical analysis of this variant is a future work.

Repeated-CTP was found tractable on disjoint-path graphs (Chapter @
We conjectured that Interleaved-CTP on disjoint-path graphs is tractable as
well, and specifically, given a disjoint-path graph, every optimal for Repeated-
CTP is also optimal for Interleaved-CTP. This conjecture was empirically
checked in [27] in which, in over a thousand disjoint-path graph instances,
no counter-example was found.

In short, the following presents the contributions of this work.

1. Proving that CTP is PSPACE-complete, thus solving a two decades
old open problem (Chapter |3]). This result appeared in [14].

2. Proving that the optimal cost for the CTP is monotonically non-decreasing

in edges costs and blocking probabilities (Section .
3. Introducing constrained-CTP (Section [4.2)).

4. Introducing the CTP partition framework, which provides a mechanism
for CTP decomposition (Section [4.2.2)).

5. Introducing CTP-Tree (Chapter [5)).
6. Efficiently solving CTP-Tree with no exploration vertices (Section.

7. Efficiently solving CTP-Tree, which has a single exploration vertex,
with known outgoing edges (Section .

8. Efficiently solving EFC-CTP-Tree (Section , empirically testing
other CTP-Tree instances (Section [5.4)).

9. Introducing Repeated-CTP and efficiently solving Repeated-CTP on
disjoint path graphs (Chapter@. This result appeared in [7]. A journal

version was recently submitted as well.
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Appendix A

Claim 2.3.1 If 7 is an optimal policy for a Det-POMDP M, and b €
By (bo, ), then ;i is an optimal policy for M.

Proof: Assume in contradiction that there is a policy m, for M, such that
C(m,) < C(m}). Recall that By, = By(b) is a subset of By Let 7’ be the
following policy for M: for every d € By, let 7'(d) = m,(d), and for every
d & B, let ©'(d) = 7*(d). For v € V where L(v) = b, let H, = {vg,---v;}
be the trunk of v. Then vy = r, and v; = v. Denote L(v;) by b;, for every
i < 1. We prove by backward induction on [, that V™ (v;) < V™ (v;) for every
i < 1. Then, as C(7') = V™ (r) and C(7*) = V™ (r), it follows that 7* is not
optimal, contradicting the claim assumption.

For the basis of v; we have that L(v;) = b, and as C(m,) = V™ (v) and
C(m*) = V™ (v), we have that V™ (v;) < V™ (v).

We prove that V™ (v;) < V™ (v;) for i < [. First assume that v; is an
OR-node. As b; € By, we have that 7'(b;) = 7%(b;) Therefore

!

VT (Uz) = C(Ui, Ui+1) + Vﬂl (Ui+1) (Al)

and

VT (v5) = e(vi, vig1) + V™ (vig1) (A.2)

By the induction assumption V7™ (Viy1) < V™ (vig1), therefore |74 (v;) <
Vﬂ-* (Uz)

Next, assume v; is an AND-node. Denote the set of observation re-
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ceived in a state j, after an action a was performed at belief state b, by
Z(b,a,j). As bi_y & By, we again have that 7'(b;_1) = 7*(b;—1). Hence
Z(bi—1,7"(bi—1),j) = Z(bi—1,7"(bi—1),J) for every state j € sup(b;). There-
fore we have by Equation ([2.8)

VT (vi) = _Z (p((vi, w))V™ (w) (A.3)

and

Vi) = D (v, u)VT (u) (A.4)

(viu)EE

where F is the set of outgoing observation-arcs from v;.

Note that (v;,v;41) € E, and for every node u where (v;,u) € E and
L(u) # bi11 , we have By (L(u)) N By (b) = 0. Hence for every belief state
d € By(L(u)), we have 7'(d) = 7*(d), which implies V™ (u) = V™ (u). By
the induction assumption we have V™ (vi11) < V™ (vi41). Therefore from
Equation and Equation we have V™ (v;) < V™ (v;) as required.

O
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Appendix B

B.1 Bayes Network construction

We describe the layout of the Bayes Network (Y, A, P) that is required for the
proof of Theorem [3.2.1] The set Y of random variables is described as follows.
The universal edges (v;,v;1), and (v;,7;1) are represented by the random
variables f;, f; for every universal variable z;. For every variable x; and clause
¢;j, the observation edges (0,5, vi;), and (05, U;;) are represented by the random
variables e;;, and e;; respectively. The chance edges (r1,7]) and (re,r}) are
represented by the random variables odd, and even respectively. All the
random variables described so far have a range of {blocked, unblocked}. In
addition for every i < m, we have random variables ¢;, and d; called clause-
variables with a range of {0,1}. The clause-variable ¢; is 1 if and only if the
observation edges that are related to the clause ¢; are found blocked. The
clause-variable d; describes the XOR operation between the clause-variables
d;_1, and ¢;.

The layout of the network along with the conditional probability tables
appears in Figures [B.1][B.2] and Figure describes the dependency
between the universal edges. Figure describes an example of the depen-
dency between the observation edges that represent three literals that appear
in the same clause. Finally, Figure describes the network that allows the
dependency of the chance edges. Note that BN is a polytree with a size
linear in the size of the input formula ®. Therefore probabilistic inference

on BN can be done in a time linear to the size of ® as well.

111



fi P(f)
Blocked 0.5
Unblocked 0.5

fi fi P(filf)
Blocked Blocked 0
Blocked Unblocked 1
Unblocked Blocked 1
Unblocked | Unblocked 0

Figure B.1: The segment of the Bayes network construction that describes
the dependency between the universal edges.

€13 P(eq3)
Blocked 0.5
Unblocked 0.5
€13 €33 P(&;3le13)

Blocked Blocked 0
Blocked Unblocked 1
Unblocked Blocked 1
Unblocked | Unblocked 0

e €43 P(eq3]€23)
Blocked Blocked 0
Blocked Unblocked 1

Unblocked Blocked 1

Unblocked | Unblocked 0
C3 €43 P(czleqs)

0 Blocked 0

0 Unblocked 1

1 Blocked 1

1 Unblocked 0

Figure B.2: An example of the Bayes network construction that describes
the dependency between the observation edges. The clause in description is
C3 = (l’l V L9 V I‘4).

B.2 Baiting gadgets

Let ¢ = BG(u,v) be a baiting gadget with a parameter [ > 1, defined
in Section [3.3.1] (see Figure [3.2] appears below as well). Recall that 7 (as
defined in Section [3.3.1]) is the following policy for g: when at u for the

first time, proceed along the path (u,vq,--- ,vn,v) to v, taking the zero-cost

shortcut to t whenever possible, but never backtracking to w. From v continue

with any optimal policy.

112




dm-1 even P(even|d,_1)
¢ | ¢ |di |P(dy]erer)| | diea Cis1 d;  |P(di|di_1civ1)| [0 Blocked 0
0 0 0 1 0 0 0 1 0 Unblocked |1
0 0 1 0 0 0 1 0 1 Blocked 1
0 1 0 0 0 1 0 0 1 Unblocked 0

0 11 1 0 L 1 1 din—1 odd P(odd|dp-1)
1 0 0 0 1 0 0 0 0 Blocked 1
1 0 1 1 1 0 1 1 0 Unblocked |0
1 1 0 1 1 1 0 1 1 Blocked 0
1 1 1 0 1 1 1 0 1 Unblocked 1

Figure B.3: The segment of the Bayes network construction that describes
the dependency between the chance edges. The d;’s variables describe a XOR
operation between d;_q, and c;.

In formal terms, the above description of 7 should be interpreted as fol-
lows. A partially specified policy is relevant only to belief states for which it
specifies an action. 7 is relevant to any belief state b, where Loc(b) = u and
the state of all the zero-cost shortcut edges (v;,t) in the gadget are unknown.
7 is also relevant to belief states reachable from b by acting according to .
In any belief state consistent with such b, traverse the edge (u,v;). Likewise,
at any belief state where we are at vertex v; (for 1 < i < N), if the zero-
cost shortcut edge (v;,t) is traversable, then traverse it. Otherwise traverse
the edge (v, v;41) (except when ¢ = N, in which case traverse (vy,v)). At
any belief state where we are at v, perform an action that is the first action
in some optimal policy. Note that when acting according to , it is indeed
only possible for the zero-cost shortcut edges in the baiting gadget to be

unobserved if this is the first time we are at u.
Apart from 7, other policies at u that are not clearly suboptimal are:
e Choose not to traverse (u,vy).

e The following type of policies denoted by 7;, for j < N : ezecute 7
until reaching v;; if (vj,t) is unblocked, reach the destination through

(vj,t); otherwise, retreat to u and exvecute an optimal policy with an

113



Figure A baiting gadget BG(u,v) with a parameter [ > 1. Edge label
¢ | p denotes cost | blocking probability. The optimal policy at u is to cross
the path (u,vq,- -+ , vy, v), taking a shortcut edge to ¢ whenever such an edge
is found unblocked. After reaching v, retracing to u in g costs at least [.

expected cost of M; > 0.

Finally, we set N = 2M°&2(401 _ 1 implying N + 1 > 41.

Claim 3.3.3 When at u for the first time, under Invariant T s
optimal for a baiting gadget g = BG(u,v) with a parameter | > 1. After

reaching v, it s suboptimal to backtrack to uw in g.

Proof: Denote by K > 0 the expected cost of every optimal policy executed
once v is reached. As there is a cost [ shortcut edge (v,t), it is clear that
K <[. Therefore, as retracing g from v to u costs [, it is always suboptimal
to retrace g once v is reached. We first show that C'(7) < 1, hence under
Invariant , choosing not to traverse (u,v) is suboptimal.

Note that for every ¢ < N, the probability that (v;,v;y1) is traversed in

7 is (3)". Hence we have

Clm) = 57— z;@)i NE (B.1)
Thus
2 —(N+1) -N
(M) = g (1-2 V) +27K (B.2)

Then, as K <[, N+ 1> 4l, and [ > 1, we have that
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B.2. Baiting gadgets

2 . 3
C(w)<@+2 l<1<1. (B.3)

as required.

Finally we show that for every j < N, C(m) < C(m;), hence the policy 7;
is suboptimal. We have that:

| 1..( 4l
Y = ) —_\J _ 4
() N+1ZZ:O(2) +(3) (N+1 +MJ> (B.4)
Thus:
2l P |
D = _ J J .
C(;) N+1(1 2 )+N+1+2 M, (B.5)

Then in order to prove that C(m) < C(7;), we need to prove, from (B.2]),
and (B.5)), that

21

21 2Tl
= 1
N1l

1—-27 04+ 49770, (B.6
N+1< )+N+1+ i (B6)

_ 27(]\/4’1)) _'_27NK <

From Invariant|3.3.2, we have that 1 < M;. Then, as K < [, it is sufficient
to show that for every 0 < j < N:

21
N +1

2]
N +1

977 j1
N+l

(1 -2~y L o=N) < (1-279)+ +277  (B.7)

For this we need to prove

21
N+1

By multiplying both sides by 27, we need to show that for every 0 < j <

(279 — 2=+ _9=i=ljy 4 o= Nj < 9

N

Y

2l
N +1

For this, it is sufficient to show that for every 0 < 7 < N,

<1 — QI=N-1 ;) + 27N <1
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o j .
A (1)) peiNp g B.
N+1< 2>+ < (B.8)

Finally, inequality (B.8]) follows since the function:

flo) = N2i1 (1- g) +oe Ny

over the reals, has only one extremum, and as N +1 >4l and [ > 1, we
have that f(0) <1, f(N) <1 and

lim f(x) = lim f(z) =00

T—00 T——00

B.3 Observation gadgets

Let ¢ = OG(u,v,0) be an observation gadget as defined in Section m,
and seen in Figure , appears below as well). Recall that 7, is the fol-
lowing partially specified policy for OG(u,v,0): At u, cross BGy (observe
(vi,v4)). Then cross BGy. If either (vi,vs4) or (vq,v3) is found blocked,
reach t by traversing the shortcut edge (ve,t) with cost 3L/2. However, if
both (v1,v4), and (ve,v3) are unblocked, traverse (ve,vs,o0,vy,v1,v}) (at o,
observe any edges incident on o), and cross BG3. From v continue with any

optimal policy.

Claim 3.3.5 Assume L > 8. Then, when at u for the first time, under

Invariants|3.3.49 and|3.5.4), 7, is an optimal policy for an observation gadget

g = O0G(u,v,0).

Proof: First note that by following m,, Invariants holds for every
baiting gadget in g. At u, as BG is a baiting gadget, then by Claim [3.3.3]
it is optimal to cross BG;. When first arriving at vy, after BG; is crossed,

(v1,vy4) is observed. As (o0,v4) has a cost of 5L/8 > 1, and (vy,v]) has a cost
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B.3. Observation gadgets

/
v
=1 BG3 —e v
3
4
V4
T2 r3 T4 r5 r’ r!
o o o+ 4" & '@ the exam section path
0[p1 1 0lp1 1 0p1

Figure : An observation gadget OG(u,v,0). Light gray arrows indicate
general traversal direction of the optimal policy 7. BG; and BG5 are baiting
gadgets with a parameter [ = L. BG, is a baiting gadget with a parameter

| =3L/2.

of 1, then by Claim [3.3.3] it is optimal to cross BG. Once at vs, if (v2,v3)
is blocked, it is optimal to take the shortcut (vq,t) for a cost of 3L/2.
It remains to show that if (vq, v3) is unblocked, the optimal policy at vy

18:

1. If (v1,v4) is unblocked, traverse (v, vs,0,v4,v1,v]), cross BGs, and

from v continue with any optimal policy.
2. Otherwise, traverse the shortcut (vy,t) for a cost of 3L/2.

Case 1: (v, vy4) is unblocked.

First note that arriving at v; a second time through (vy,v;), BG; and
BG4 are known not to have any unblocked shortcut edges, thus crossing them
costs at least L > 8. Hence by Claim [3.3.3] the optimal policy when arriving
at v a second time is to traverse (vy,v]), cross the baiting gadget BG3, and
from v continue with any optimal policy for a total expected cost of less than
2.
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Now, traversing (vs,vs, 0, v4,v1,v]), crossing BG3, and continuing with
an optimal policy, bears an expected cost of at most 2(5L/8) + 2, while
traversing (vq,t) costs 3L/2. Hence, as 2(5L/8) + 2 < 3L/2, it is optimal at
vy to traverse (vq, v3,0) to the vertex o.

We now inspect the possible partially specified policies at o:

Case 1.a: Traverse (0, vy4,v1,v]), cross BG3, and from v continue with any
optimal policy, for an expected cost of at most 5L/8 + 2. We denote
this partially specified policy by 7.

Case 1.b: Traverse edges of another observation gadget g, if there exists
such ¢ incident on o, and continue with any optimal policy. Suppose
that g has not already been traversed (label the vertices of g as v;).
Then traversing either (o, v3) and trying to traverse (vs, v3), or travers-
ing (0,v) and trying to traverse (vg, 1), results in an expected cost of
at least 5L/8 + 3(5L/8)/4. Hence, as 5L/8 + 2 < 5L/8 + 3(5L/8)/4,

we have that executing 7’ is cheaper than traversing any edges of g.

Next suppose that g has already been traversed. Therefore we may
assume that the policy 7y was executed in Entry(g); thus the baiting
gadgets of g are known not to contain any unblocked zero-cost short-
cuts, hence crossing each such baiting gadget costs at least L. Then
traversing g results in an expected cost of at least 5L/8 + L, and as
5L/8+2 < 5L/8+ L, we again have that executing 7’ is cheaper than

traversing any edges of g.

Case 1.c: Traverse the exam section path, if o is connected to this path.
Recall that o is identified with r5. First suppose that the observation
edge (r4,75) is blocked. At o, denote the following partially specified
policy by my: cross (rs,77); if (r7,74) is unblocked, continue with any
optimal policy, otherwise, return to o, and execute @', which can still
be executed, for an expected cost of C(n') < 5L/8 4+ 2. Then we have

C(m) > 1+p (14 C(x"))
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B.3. Observation gadgets

and as p; > 1 —2/(3L + 1), we have that

C(r') <1+ pi(1+C(x')) < C(m)

Therefore executing 7’ is cheaper than executing .

Now suppose that (ry,rs) is unblocked. Then we can either execute m;
(or the symmetric case in which (r9,73) is being inspected) with the
same analysis, or we can extend m; with the following policy denoted

by mo:

Ezecute 71; upon returning to o (after (ri,rh) is found blocked), cross
(r5,r4) and (r4,73); if (r3,79) is unblocked, continue with any optimal
policy; otherwise return to rs, and execute 7', which can still be executed
for an expected cost of C(n') < 5L/8 + 2. Then we have that

C(ms) > 1+ 2p + p2(1 + C(x))

However, p; > 1—2/(3L+ 1) entails C(n’) < C(ms). Therefore execut-
ing 7' is cheaper than executing my as well. The policy in which (7, 73)
is the first edge among (79, 73) and (7, 75) to be inspected is symmetric
to mo. Hence we see that traversing any edges of the exam section path

is suboptimal.

Case 2: (vq,vy) is blocked.

In this case the following partially specified policies can be executed at

Case 2.a: Take the shortcut edge (vy,t) for a cost of 3L/2. Denote this

policy by =’

Case 2.b: Traverse (v9,v3) and (vs,0) for a cost of 5L/8 and at o traverse

edges of another observation gadget. As in Case 1.b we have that
traversing edges of g results in an expected cost of at least 5L/8 +
3(5L/8)/4. Then, as 3L/2 < 5L/8 + 5L/8 + 3(5L/8)/4, we have that

7" is cheaper than reaching o and traversing any edges of g.
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Case 2.c: Traverse (vg,v3) and (vs,0), for cost of 5L/8, and at o traverse
the exam section path. We define 7} and 7}, as m, me respectively in
Case 1.c, with the one difference that when back at 75, the cost 5L/8

edge (vs,0) is traversed before executing 7’.

Then we have that

C(mh) > 14 p(1+5L/8 4+ C(x'))

and

C(mh) > 1+ 2p1 + pi (1 +5L/8+ C(x))

Recall that C'(n’) = 3L/2. However as p; > 1 —2/(3L + 1), we have
that C(n') < 5L/8 + C(x}) and C(n') < 5L/8 + C(r}). Hence 7' is
cheaper than traversing (vq, v3,0) and then traversing any edges of the

exam section path.

This concludes the proof.

B.4 Behavior of reasonable policies

Claim 3.3.6 At rq, any reasonable policy acts as follows:

e [f all the edges in the exam section were observed to be unblocked, cross

(ro, 71, -+ ,ri"™ t) until reaching t for a cost of 2(m + 1).
o Otherwise, cross the cost L shortcut edge (ro,t).

Proof: We first note that any deviation from the exam section results in a
cost of at least L. Then note that unless all the edges in the exam section
were observed to be unblocked, any partially specified policy executed at rg
results in a cost of more than L; therefore it is cheaper to take the shortcut
(ro,t) for a cost of L.
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B.4. Behavior of reasonable policies

Retracing BG(z,, 29) clearly results in a cost of at least L. At every

vertex 7}, [ < m + 1, ,i < 5, any unblocked edge on the exam section path,
!

either BG(2141,21) or BG(z, z;-1), which hold no unblocked shortcut edges;

hence crossing these results in a cost of at least L. If 7% is identified with an

incident on 7!, can be traversed. At 7 there is an additional option to cross

observation point of some observation gadget g, there is an additional option
to traverse edges of g. However, by an argument identical to Case 1.b of the
proof of Claim [3.3.5], traversing any edges of g results in a cost of at least L.
Hence any deviation from the exam section path results in a cost of at least
L.

Now, suppose that all the edges of the exam section are known to be
unblocked. Then, as the exam section contains 2(m + 1) always traversable
cost 1 edges, and as 2(m + 1) < L, the optimal policy is to cross the exam
section (rg, 71, ,t) for the cost of 2(m + 1).

Otherwise, suppose there are edges in the exam section with unknown
status. Let e be the first unknown clause edge in a sense that that every
edge in the path from ry to e is known to be unblocked. Finding e blocked
results in either retracing the exam section to ry and taking the cost L short-
cut to t, or in deviating from the exam section for a cost of at least L. Hence,
as (7o, 71) is an unblocked cost 1 edge, traversing the path from rg to e results
in an expected cost of at least 1+p; L. Andas L > 1 and p; > 1—2/(3L+1),
we have that 1+p, L > L. Therefore traversing the shortcut edge (ro, t) for a
cost L is cheaper. Obviously, the same argument holds when e is previously
known to be blocked.

O
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Appendix C

Lemma 4.1.2 Let [ = (V, E,s,t,p,w), and I' = (V,E,s,t,p',w) be a CTP
instance such that p’ < p. Let w*, 7" be optimal policies for I, 1" respectively.
Then C(n"™) < C(7).

Proof: We show that if p’(e) < p(e) for some e € E, and p'(e;) = p(ey) for
every e; # e, then C(n"*) < C(7*).

As both I and I’ have the same graph layout (V| FE), the belief states
of By and of By have the same variables-status representation. Therefore
we can define the bijection f : By — By, as in Lemma [.1.1] in which
Loc(b) = Loc(f(b)), and ble’ = f(b)|e, for every b € B; and ¢ € E. In
addition let g, : By — B be the following function. For every belief state
b€ Br:

e Loc(ge(b)) = Loc(b)

e g.(b)|e/ = ble for every ¢’ # e

ge(b)|e = ble if ble = unknown

ge(b)|e = blocked if ble = unblocked

ge(b)|e = unblocked if ble = blocked.

We say that e is revealed in a transition from a belief state b’ to a belief
state b in a policy 7 if b = b;‘_’(b,) for some observation o, and if the status of
e is unknown in & and is known in b. We say that e is revealed in a belief

state b if there is a belief state b’ such that e is revealed from ¥ to b in 7.
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Note that every two distinct belief states by, by, in which e is revealed, are
separated.

Next, we construct a stochastic policy 7} for I’ such that in some cases,
when e is revealed unblocked in a belief state reached in 7y, then 7] acts as
if e is still blocked. Then we show that C(7}) = C'(7*). As #"* is an optimal
policy for I, then C'(7™*) < C(m), which concludes the proof.

We now construct ;. For every belief state b € I’ in which e is revealed

to be unblocked we do as follows. Let

_ple) —p'(e)
1—p/(e)

With probability x, for every belief state b’ reachable from b in 7%, let
(V") = 7 (g.(f(V'))); and with probability 1 — x, for every b’ reachable from
bin 7* let (V') = 7*(f(V')). Finally, let 1 (b") = 7*(f(?)) for all other belief
states.

Now assume that e is revealed from belief state b’ € B; to a belief state
b. As V' itself is not reachable from a belief state in which e is revealed, we
have () = 7*(f(b')). Let 2,2" be OR-nodes in Ty~, Ty, respectively, such
that Ly, (') = b, and Lr,.(2) = f(b). We show that V() = VT (2).
Note thalt if b; € By is separated from b, then for every nodes u’ € Ty, with
L(u) = by, and u € Ty with L(u) = f(by), we have V™i(u/) = V™ (u).
Therefore, by using the same inductive method as in Claim [2.3.1], we have
that V™ (k') = V™ (k) for every node k' ancestor of 2/, and node k ancestor
of z, thus the proof is complete.

To see that V7™ (2') = V™ (2), denote the action (V') by a (where a
is the action Move(e;) for some edge e1). Denote the set of observations
received when performing a in & by O’. Denote the grandchild of z for which
L(z2) =02 by z2. Then,

VT (2) = wler) + Y (p(t|a, 0) V™ (22))

ocO’

Note that as e is revealed by o' in 7, then in any observation o € O,

e is revealed to be either blocked or unblocked in ). Therefore we divide
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O into O': the observations in which e is revealed blocked, and O™: the
observations in which e is revealed to be unblocked. Note that there is a
bijection h : O"' — O such that for every edge €’ # e, the status of ¢’ in o
and h(o) is identical. Let B(O") = {b'°]o € O'}, and B(O"?) = {¥/'?|o € O?}.
Hence for every o € O, we have g, (b'?) = b,

Therefore for every b € B(O™), such that b = 0/°, and p(b'|a, 0) = q(o)p(e)
for some probability ¢(o), we have p(g.(b)|a, h(0)) = q(0)(1 —p(e)). Then we

can write

V) = ule) + Y 0@V )+ Y (alo)(1 - ple)V (=)

0€e0"! 0€0’?

To calculate V™ (2') we repeat the same analysis. As 7} (f(0)) = a as well,
we have that after performing a in f(b'), the same set of observations O is
received. Since p(e1) = p'(e1) for every ey # e, then p(f(b')]a,0) = q(o)p'(e)
for every o € O, where p(b'|a, 0) = q(o)p(e). Therefore we have

V() = w((u, )z Y- (a(0)p (VT (2))+(1=x) 3 (a(0)(1-p'(e))V™ ()

0ocO"1 0c0’2

However, as zp'(e) = p(e), and (1 — z)(1 — p'(e)) = 1 — p(e), we have
V™(2) = V™ (z) as required.
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Appendix D

D.1 Policy simulation

We give a formal definition of policy simulation as informally defined in
Section .21

Let M be a Det-POMTP with a set of actions A, and let M’ be a Det-
POMDP with a set of actions A". Let g : A — A’ and h : By, — By be two
functions, and let B}, Bs¥ C By be two sets of belief states in By;. Let 7
be a policy for M. Then a policy 7’ for M’ is an (h, g, B¥}, B$#)-simulation
of a policy 7 for M, if we have g(7(b)) = #'(h(b)) for every belief state b
between Bi% and B$¥ (see Figure . Throughout this work, the set of
actions of M and the set of actions of M’ are the same, and ¢ is the identity
function (see Figure. When h, g, Bi%, B$#* are obvious from the context,
we say 7 is a simulation of 7, and 7 simulates «’.

Now, let I = (V, E, s,t,p,w) be a CTP instance, and let I' = (G', ¢, ),
where G' = (V' E’), be a CTP sub-instance of I. For a belief state b € By,
such that Loc(b) € V', we denote by b [ E’, the belief state b’ € By in which
Loc(b) = Loc(b') and ble = U/|e for every edge e € E’. Let h be a partial
function from B; to By, defined in all belief states b with Loc(b) € V7,
such that h(b) = b [ E’. Note that h is onto. Let id be the identity
function over the set of actions {move(e)le € E’}. Let Frp be a func-
tion from the set of I’-committing policies for I, to the set of policies for
I', such that Fyp(n) is the (h,id, B™(G', x), B°(G’, 7))-simulation of 7.

Note that as I’ is a sub-instance of I, then Fy  is onto, and that if 7’ is a
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B h By
i 7T/
A g A

Figure [3.3} Policy simulation where g is a general function from A to A’.

BM h BM/

Figure Policy simulation where A and A’ are identical and ¢ is the
identity function.

(h,id, B™(G', ), B°(G', ))-simulation of , then C(trunc(my, B{*'(G', 7)) =

C(n"). 7 is then called the contraction of w to I.

D.2 The sub-graph exclusive lemma

Let G = (V, E) be a graph and let G’ = (V’, E’) be a subgraph of G'. Let E’-
exclusive be the following constraint: ”the edges of £’ cannot be traversed”.
Let M = (G, s,t,p, w) and M= (G, s,t,p,w) be E'-exclusive CTP instances
such that p(e) = p(e). Then we have the following lemma .
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D.3. Generalization of the partition framework

Lemma D.2.1 Let 7 be an optimal E'-exclusive policy for M, and let 7
be an optimal E'-exclusive policy for M. Then C(n*) = C(r*).

Proof: If the edges of E' cannot be traversed in M or in M, they might as
well be blocked. Therefore if M = (G, s,t,p,w) is a CTP instance such that
p(e) = p(€) for every e € E\FE', and p(e) = 1 for every edge e € E’, then
we have that C(7*) = C(x*) where x* is an optimal policy for M. For the
same argument we have that C(7*) = C(x*). Therefore C(7*) = C(7*) as
required.

O

D.3 Generalization of the partition framework

We generalize the partition framework to subgraphs with mutual vertices.
Let U(G) C V be the set of all vertices in V' that are explored in by. Let
I' = (G',¢,t') be a sub-instance of I where G’ is connected to the rest of
the graph only through s',¢ and vertices of U(G). In order to define I’-
committing policy, we need to re-define the entry-point and the departure-
point of G'.

An explored edge in a belief state b is an edge that is known in b.

A meaningful tour in G’ can be either of the following

e a sequence of moves in G’ along explored edges in by, which starts at

s" and ends in t'.

e a conditional sequence of move actions, all in G, in which a status of

an edge in F’ is revealed with probability 1.

We say that an OR-node z € Ty, where L(z) = b, is an entry point (in 1)
of G', if 7(b) is the first action in a meaningful tour in G’, and either b = by
or PrevAction,(z) is outside G'. We say an AN D-node z, with L(z) = b, is
a departure point of G’ (in Ty), if PrevAction,(b) is an action in a revealing

tour in G’, a single observation is received at b, and NextAction,(b) is outside

G
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Definition D.3.1 A policy 7 is I'-committing (or (G',s',t")-committing) if
the following hold:

e the only entry points of G' in T, are of Z™(G', ).
e the only departure points z of G’ in Ty are of Z°(G', ).

e any move actions in G' at any belief state reachable from Z°“'(G', )

are along explored edges.

See that Lemma still holds for this generalization.

Now let (Gy, s, t'), (Ge,s',t') be sub-graphs where each G; is connected
to the rest of the graph through s',¢ and vertices of U(G). Therefore we
still have that when traversing G, no edges of GGy are revealed; and when
traversing G, no edges of G are revealed. Hence Lemma [4.2.3]still holds as
well.

Finally, we define the following generalization of a CTP partition.

Definition D.3.2 A CTP instance [ = (V, E, s,t,p,w) (where G = (V, E))
is a partition of CTP-instances ((G1,$',t),-+(Gk, s',t)) of M, where G; =

o ViNVIC(UG)U{s, t})
I is called a {Gy,--- ,Gy}-CTP partition .

Then Corollary still holds for this generalization as well.
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Appendix E

Lemma E.0.3 Let T be a tree. Then Pr, the probability that T is blocked,

can be recursively found in polynomial time.

Proof: Let r be the root of T. If [ is a leaf then p(l,t) = 0. Let uq,-- -y,

be the children of a vertex u then

Pray = [[ P(T7" (w;)) (E.1)
i<l
where for every 1 <[
Preor(u) = p((u, 1)) + (1 = p((t, 4,))) Preay (E.2)

Therefore Pr, which is the same as Pr(,y can be found in polynomial time.
O

Lemma E.0.4 Do (¢v/) < DT

Proof: Let 7" be a CTP-Tree obtained from 7" as follows. For every edge
e that is not contained in a subtree TP (v), where v’ is of height h — 1, the
cost of e in T is reduced to 0. As T and T have the same graph layout, the
belief states of By and By have the same variables-status representation.
Therefore for every belief state b € By, there is a unique belief state b' € By
such that b' has the same status-variables representation as b (see Section

for exact definition of the status-variables representation). Therefore m,
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can be executed in By as well, and specifically Travel(T""), for the analogue
subgraph T"' of T*, can be performed in b'.

Let X be the random variable that describes the expected cost of Travel(T™)
performed in b' . Then CT" = E[X]. Let uf, - ul, be the vertices of 7" of
height i — 1, in which (Parent(u)),u!) is known in b' to be unblocked, and
let X? be the random variable that describes the cost of traversing 77" (u?)
(as a part of the macro action Travel(T"")). Likewise, let u},---ul be the
vertices of T'! of height h — 1, in which (Parent(u}),u}) is not known in b!

to be unblocked , and let X} be the random variable that describes the cost

of traversing 77" (u}) (again, as a part of the macro action Travel(T')). As
the only edges of cost greater than 0 are in edges of the 77" (u¥), we have that
X = Sics X2+ 3ics, X}, and therefore E[X]| = Y., F[X?] 4+ Yies, [Xl}.
For k € {0, 1}, denote by QF the probability that TP (u¥) is entered. As u¥ is
of height h—1, then by the induction assumption, 7, is 77" (u¥)-committing,
and therefore F[XF] = Q¥C(TT* (uf)). However, as for every k € {0, 1}, all
the TFo (uF) are identical, we have that C(TF (u¥)) = C(TP (uf)), and

Prear iy = Prear ) y for every i < 2.

Therefore we have

CT =3 QYOI () + 3 QIC(T™™ (u})

<20 1<zl

Now, as the probability that ¢ is reached through a leaf of TP (uF),

assuming 77 (u*) is entered, is 1 — Ppear(,y), We have that

/1
l—PT ZQol—PTPar +ZQ 1—PTPar( ))

1<20 1<z1
and as IC (ZZS:Z)) = f (ITD:;Z(T(U)z DPar(y')| we have that
DT/1 — CT’I _ Zi<zo QOC(TP(M( )) + Zi<21 Q%C(Tpar (U%)) — DPar(U/)
1 - p7m > i<z Q (1 - PTP‘" (1)) + X i<n Qzl(l - PTP”'T(’U,%)
(E.3)

Now, as in T we have w((Parent(v),v)) > 0, then we have C7" < C7’,
As PT" = PT" | we have that DT" < DT’ meaning D% (v/) < DT', as re-
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quired.

Lemma E.0.5 For a vertexv € T that is not the root, denote by Q%pm(v) the
probability that TY (v) is unblocked given (Parent(v),v) is unblocked. De-
note by C°(TT (v)) the expected cost of TRY (TP (v)) given (Parent(v),v)
is unblocked. Let D°(TT" (v)) = %jﬁ)) Then

DY(T"" (v)) = D(T™ (v))

Proof: Follows straight from the definitions. As

CUTP* (v)) = w((Parent(v),v)) + C(T(v)) + Pruyw((Parent(v),v))

and

Q(Q]“Pa'r(,v) - 1 - PT(U)

and we have

C(T""(v)) = (1 = p((Parent(v),v)))C*(T"" (v))

and

Prrar@y = (1 — p((Parent(v),v)))Pre
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Table of Notations

Symbol Page
E, the edges incident on v 0
Parent(v) the parent of v 5
=<7 partial order on the tree T’ §
depth(v) depth of vertex v 6
height(v) height of vertex v 6
Depth(T) the depth of T' 6
Height(T) the height of T’ 6
Rank(v) the rank of T’ 6
T(v) the subtree of T" with root v 6
TP (v) T'(v) with Parent(v), and (Parent(v),v) 6
i restriction of a function 6
T(s,a,s") transition function 8
R(s,a,s") reward function S
V7(s) value of 7 at state s 10
C(m) the cost of ™ 10
O(s,a,o0) observation function 10
bo the initial belief states 11
By the set of belief states in M 11
p(ola, b) 11
b 11
b, 12
sup(b) the set of states ¢ in which b(i) > 0 13
Ay actions available at belief state b 13
B (b) belief states reachable from b 13
By (b, ) belief states reachable in 7 from b 13
VaND AND vertices 13
Vor OR vertices 13
Eor OR arcs 13
Einp AND arcs 14
L a label function from nodes in 7" to belief states 14]
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trunc(my, B) a partial truncated policy 52
w(e) cost of edge e

p(e) probability of e to be blocked

q(e) probability of e to be unblocked

Y. edge status function 16
loc vertices location function 16
Loc(b) location at belief state b 17
Ble status of edge e in belief state b 18
Nex(b) explored neighborhood of b 21
a(b) the fringe of b 21
Traverse(v) macro action Traverse 21
Wi ; cost of path I; until the j'th edge 23
TRY (i) macro-action TRY for a path I; 24
INV(i,5) macro-action /NV for a path I; and an edge e; ; 24
Q; the probability that I; is unblocked 23
BC(i) backtracking cost of I; 24
U(G) all vertices v with E, unblocked | [129
PrevAction, previous action in 7 50
NextAction, next action in 7 50
Zn(G' ) 50
Z5uee (G ) 50
Z1al (G ) 50
204G ) 50
B™(G', ) 50
Bt (G ) 50
BI(G' ) 50
Bo(G', ) 50
B (G ) 51
TRY(I') macro action TRY for a sub-instance I’ 55
Travel(T) macro action Travel 73
TRY, macro action T'RY for n agents 87
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Index

action arcs, [14]

actions, [§

ancestor, [5]

And-arcs,
AND-nodes,
approximation ratio,

arcs, [L3]

baiting gadget,
balanced tree, [0]

belief state,
belief-state MDP,
between, belief states,
blocked edge,
blocked, edge,

Canadian Traveler Problem, CTP, [f]
child,

chosen, vertex, [64]

committing policy,

committing ratio,

committing, CTP-DISJ,
committing-vertex, [61]

constrained policy,
constrained-CTP, [47]

contraction, [52] [I30]

cost function, [9)

CTP decision problem,
CTP-Dep, 2§
cut, tree, [

departure point,

dependent CTP (CTP-Dep),
depth, vertex, [6]

descendant,

Deterministic POMDP (Det-POMDP),

EFC-CTP-Tree, [7]]

entry point, [50] [L3]]
environment history, [9)
exploration-vertex,
explored edge, [13]]
explored vertex,
explored-neighborhood,

factored cost,
factored-cost gap,
finite horizon, [9]

first departure point,
first entry,

free edge,

fringe,

goal state,
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Index

grandchild, parent, vertex, [

grandparent, Partially Observable Markov Decision
Process (POMDP),

height, vertex, [6] partition, CTP, 4]

horizon, [9] policy.

policy simulation, [129

policy, partial,
policy, switching,

Identical-CTP-Tree,
incoming edge, [6]

indefinite horizon, [J]

infinite horizon, [9] reachable,

inside, action, reachable, belief state,
intermediate belief state, Repeated-CTP,
intermediate vertex, [0] Reset-CTP, [I09]

restriction, [0

revealed, edge, [47]

reward function,

leaf, [6]

macro action, [20]

Markov Decision Process, root, tree, [j

Markovian transitions, separated, belief states,

maximal cut, [] siblings,
meaningful tour, [131 size, tree, [f]
splitting vertex,
states, [§]

stochastic policy, [46]

nodes,
NoExpTreeSolver, algorithm,

observation, succeeds, committing policies,
observation arcs, support, [I3]

observation gadget,
OneExpTreeSolver, algorithm,
optimal cost, [9]

terminal belief state,
terminal free edges,

_ _ terminal states, [J]
optimal policy, [9]

OR-arcs,

transition function,

OR-nodes, [T3 tree, B
_H? > trunk,
outgoing edge, [0]
outside, action, unblocked edge,
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Index

underlying MDP,
variables-status representation,

Weighted AND/OR tree,
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7PY2Y D33 YHIPVNIN PNIND 19),9D2 TIPTIP D30 21NN 120N N2 7PYAY DM HYHIVIN NN
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S0 ooxYo > Yo 1wasypn CTP-Tree S vairoand 5wy 09N NN D8N

WD NN INNL DNV NN DI YHwnn-vnnn 1 L(EFC-CTP-Tree) 552wmn-nm
MMLAN NINAD PP NNNN NT PNIND NN VNI TPPINN OXPTIA NN 19N INND .Y
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{712 o9 13 nMay .(disjoint-path graphs) 0150101 0y D97
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1221 9951 AWNNN HOYTNI MIPMN NPDIDIN NPYIAN NIAPHN PON N VIdN NPyl
DTPHNN DYV NIDOY PN NPORIPN YINNN NPYL 2170 MNIND ,NNT DY VI NINMONIN
2100100 PONN D PN OMMNND ONYN D NITON ,NINAN VIV NMYA NIX DHNTY DD
TN MITHND MOYN OX P2 ,D0W1101 VIDOWN MY NN IMNND Nan Nx > (Planner)
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NPN2 13 YA HHyav 1o Xon (The Canadian Traveler Problem) »mpi yown nrwa
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5 7PYAN NRYM N DDA .[31] 2> D1 PRYN NMYID INYRID NITNN PPN YONN N»ya
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