
Theoretical Aspects of the
Generalized Canadian Traveler

Problem

Thesis submitted in partial fulfillment

of the requirements for the degree of

“DOCTOR OF PHILOSOPHY”

by
Dror Fried

Submitted to the Senate of Ben-Gurion University

of the Negev

July 2013

Be’er-Sheva









This work was carried out under the supervision of

Professor Eyal Shimony

In the Department of Computer Science
Faculty of Natural Sciences





 

 

 

 

 

 

Research-Student's Affidavit when Submitting the Doctoral Thesis for Judgment 
 

 

 

 

 

I Dror Fried, whose signature appears below, hereby declare that 

(Please mark the appropriate statements): 

 

I have written this Thesis by myself, except for the help and guidance offered by my Thesis Advisors. 

 

 

 

The scientific materials included in this Thesis are products of my own research, culled from the period 

during which I was a research student. 

 

 

 

 

___ This Thesis incorporates research materials produced in cooperation with others, excluding the 

technical help commonly received during experimental work. Therefore, I am attaching another affidavit 

stating the contributions made by myself and the other participants in this research, which has been 

approved by them and submitted with their approval. 

 

 

 

 

Date:   27.5.2014      Student's name: Dror Fried        Signature: 

 

 

 
 

 

 

 

 





Acknowledgments

First and foremost, I would like to thank my advisor, Professor Eyal

Shimony, for his continuous support in my Ph.D. studies and research. His

many advices about my research, and about scientific research in Computer

Science have been invaluable, and I will carry these with me. I appreciate all

his contributions of time, energy, and funding, to make my Ph.D. research

productive. I am positive that his experience and guidance helped me a lot

to grow as a research scientist.

In addition I would like to thank my former M.Sc. advisors, Professor

Uri Abraham and Professor Matatyahu Rubin, for their ongoing care and

support throughout my M.Sc. and my Ph.D. studies.

I would like to thank the Israel Science Foundation grant 305/09, and the

Lynn and William Frankel Center for Computer Science for their support

throughout these years.

I would like to thank my collaborators for their help and contribution in

my research: Gal Amram, Amit Benbassat, Zahy Bnaya, Prof. Ariel Felner,

Yaron Gonen, Dr. Yuval Itan, Olga Maksin, Cenny Wenner, Dr. Gera Weiss,

and Doron Zarchy.

In addition, I would like to thank all my colleagues and friends from the

Department of Computer Science, who have helped me a lot throughout these

years. Specifically I would like to thank Dr. Gila Morgenstern for her help,

and to Udi Apsel, for all the invaluable brainstorming we have had.

I would like to thank my family. My dear parents, Israel Fried and Rachel

Fried, who supported me throughout my life, and taught me not to be afraid

of asking the hard questions; to my sister Yael Fried for her care, and to





my mother and father in-law Shlomit and Itzhak Gilboa for their care and

support. Finally I would like to thank my dear wife Sagit, who put a tremen-

dous effort to pull this cart up the hill (sometimes with me in it), and to my

dearest Itay, Nir, and Roei, who went to bed too many times waiting for

their dad to come home. Well kids, this is what it was all for.





To Sagit and to my parents,





Contents

1 Introduction 3

2 Background 5

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Canadian Traveler Problem . . . . . . . . . . . . . . . . . 6

2.3 Decision making under uncertainty . . . . . . . . . . . . . . . 8

2.3.1 Markov Decision Process (MDP) . . . . . . . . . . . . 8

2.3.2 Partially Observable Markov Decision Process (POMDP) 10

2.3.3 Deterministic-POMDP . . . . . . . . . . . . . . . . . . 12

2.3.4 Weighted AND/OR Trees . . . . . . . . . . . . . . . . 13

2.4 Det-POMDP definition for the CTP . . . . . . . . . . . . . . . 16

2.5 CTP in a disjoint paths graphs . . . . . . . . . . . . . . . . . 23

3 Complexity of the Canadian Traveler Problem 27

3.1 The CTP is PSPACE-complete . . . . . . . . . . . . . . . . . 27

3.2 Dependent directed CTP is PSPACE-hard . . . . . . . . . . . 28

3.3 Complexity of the CTP . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Baiting gadgets . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Observation gadgets . . . . . . . . . . . . . . . . . . . 34

3.3.3 CTP graph construction . . . . . . . . . . . . . . . . . 36

3.3.4 Proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . 38

4 Decomposing the CTP 45

4.1 Comparing different CTP instances . . . . . . . . . . . . . . . 45

4.2 Partitions and constrained policies . . . . . . . . . . . . . . . 47

i



Contents

4.2.1 Constrained policies . . . . . . . . . . . . . . . . . . . 48

4.2.2 Decomposing CTP instances . . . . . . . . . . . . . . . 54

5 The CTP on Trees 59

5.1 Trees with no exploration vertices . . . . . . . . . . . . . . . . 61

5.2 Polynomial time solution for 1-Exp-CTP-Tree . . . . . . . . . 63

5.3 Optimal policy for EFC-CTP-Tree . . . . . . . . . . . . . . . 71

5.3.1 Polynomial time solution for Identical-CTP-Tree . . . . 72

5.3.2 Polynomial time solution for EFC-CTP-Trees . . . . . 74

5.3.3 Factored-cost conjecture . . . . . . . . . . . . . . . . . 76

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 77

6 Repeated-CTP 85

6.1 Repeated CTP in disjoint-path graphs . . . . . . . . . . . . . 85

6.2 Repeated CTP in disjoint-path graphs . . . . . . . . . . . . . 86

6.3 Interleaved-action CTP in disjoint-path graphs . . . . . . . . . 88

6.4 Complete proof for Theorem 6.2.1 . . . . . . . . . . . . . . . . 90

7 Conclusion 103

7.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Summary and future work . . . . . . . . . . . . . . . . . . . . 106

Appendix A 109

Appendix B 111

B.1 Bayes Network construction . . . . . . . . . . . . . . . . . . . 111

B.2 Baiting gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.3 Observation gadgets . . . . . . . . . . . . . . . . . . . . . . . 116

B.4 Behavior of reasonable policies . . . . . . . . . . . . . . . . . . 120

Appendix C 123

Appendix D 127

D.1 Policy simulation . . . . . . . . . . . . . . . . . . . . . . . . . 127

D.2 The sub-graph exclusive lemma . . . . . . . . . . . . . . . . . 128

ii



Contents

D.3 Generalization of the partition framework . . . . . . . . . . . 129

Appendix E 131

Index 136

Bibliography 139

iii



Contents

iv



Abstract

A basic question in navigation is how can the planner devise a path to a

destination when parts of the roads might be blocked, and the planner knows

whether a road is blocked only when actually reaching that road. A possible

formalization of this problem is the Canadian Traveler Problem (CTP) in

which a traveling agent is given a weighted graph with a given source and

destination. Although the graph is known, each edge may be blocked with

a known probability; the agent learns that an edge is blocked only upon

reaching a vertex incident on that edge. The problem is to find a policy for

the agent to travel from the source to the destination, which minimizes the

expected travel cost.

In this work we study theoretical aspects, and various variants, of the

CTP. As the CTP is a problem in decision-making under uncertainty, we

model the CTP as a Partially Observable Markov Decision Process (POMDP).

Using this model we can observe and analyze various policies, and by doing

that we construct optimal policies that solve the CTP.

Originally stated by Papadimitriou and Yannakakis [31], the adversarial

version of the CTP was shown to be PSPACE-complete, with the stochas-

tic version shown to be in PSPACE and #P-hard. We first show that

the stochastic CTP is also PSPACE-complete: initially proving PSPACE-

hardness for the dependent version of the stochastic CTP (called CTP-Dep),

and proceeding with gadgets that allow us to extend the proof to the inde-

pendent case. This result, published in [14], settles a question that was open

for two decades.

A common approach in Computer Science, called ”divide and conquer”,

is to find an optimal solution to a problem by decomposing the problem into

sub-problems, and finding an optimal solution to each sub-problem. In this

work, we indeed suggest a decomposition method for the CTP. Since the

”divide and conquer” approach does not necessarily achieve optimal poli-

cies on general CTP-graphs, we define specific constraints that every policy
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has to meet in order to use the ”‘divide and conquer”’ approach. We in-

troduce a CTP variant, in which every policy for a CTP instance ”must”

solve certain CTP sub-instances as well. By defining the factored-cost of

CTP sub-instances, we introduce the partition framework through which a

CTP instance can (not always efficiently) be decomposed into sub-instances.

Then, a general optimal solution can be efficiently found by finding an opti-

mal solution to each sub-instance.

Another CTP variant introduced in this work, called CTP-Tree, is the

CTP on a tree-like structure. CTP-Tree is a generalization of the CTP

on a disjoint-paths graph, as appeared in [6]. We define the concept of

committing vertex in which the agent is bound to explore an entire subtree

with a given vertex being the root. Using the partition framework, we first

provide an algorithm that yields polynomial time solution to CTP-Tree in

which all vertices are committing. Using this result we provide an efficient

dynamic programming algorithm for CTP-Tree in which all vertices but one

(with unblocked outgoing edges) are committing. In addition, we provide a

polynomial time solution to a specific CTP-Tree, called EFC-CTP-Tree, in

which all the factored-cost of subtrees of the same height are equal. We test

empirically how well such solutions to EFC-CTP-Tree approximate optimal

solutions to the more general CTP-Tree.

Finally, in many realistic settings, the CTP needs to be solved for a group

of agents moving sequentially, requiring minimization of the combined travel

cost of all agents. For example, think of an owner of a fleet of trucks who has

to move the trucks, one after the other, from a single source to a single desti-

nation. We introduce a multi-agent variant of the CTP, called the Repeated-

CTP, in which an agent moves only after its predecessor has reached the

destination. We provide efficient optimal solutions to the Repeated-CTP on

disjoint-path graphs. This result appeared in [7].

Keywords: Canadian Traveler Problem, Navigation under Uncertainty,

Stochastic Shortest Path with Recourse.
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Chapter 1

Introduction

The Canadian Traveler Problem (CTP) is a problem in navigation under

uncertainty. Given a graph, an agent is initially posed at a start vertex. By

performing move actions along the edges, the agent has to reach a goal vertex.

Suppose that the agent has complete knowledge of the graph structure and

the cost of the edges. However, some of the edges might be blocked with a

certain probability, and the agent observes that an edge is blocked only when

the agent reaches a vertex incident on that edge. The task is to minimize the

travel cost from the start to the goal. Since some of the graphs edges may

be blocked, a simple search for a path does not work; a solution is a policy

that has the smallest expected traversal cost.

Motivation for the CTP comes from problems in real life. Consider, for

example, the following navigation problem. The planner might be familiar

with the map (e.g., Canada), and with the cost of the roads, whether the cost

is the length of the road or the time to traverse the road; still, the planner

has only limited knowledge concerning the current status of the roads. A

certain road might be blocked (e.g., snow), and the planner has no way of

knowing it, before actually reaching that road. Hence search algorithms that

find the shortest path in a graph might be useless. The question the planner

asks is what is the plan for choosing the roads that ensures the minimum

expected cost to reach its destination.

In this work we discuss some of the deep theoretical challenges in the

3



1. Introduction

CTP. The exact complexity class of the CTP has remained unsolved for

more than two decades. We settle the issue in this dissertation, proving that

the CTP is PSPACE-complete. As the CTP is a classical problem in decision

making under uncertainty, we model the CTP as a Partially Observable

Markov Decision Process (POMDP). That way, we can carefully construct

policies, and define various variants of the CTP. We then use these variants to

define ”divide and conquer” methods for the CTP. Later, we implement these

methods in a special tree-like structure CTP called CTP-Tree. In addition,

we introduce several variants of the CTP, which we analyze theoretically, and

provide polynomial time algorithms to specific CTP instances.

Dissertation structure. This dissertation is organized as follows. In

Chapter 2 we provide notation and background on models of decision making

under uncertainty. In Chapter 3 we discuss the complexity class of the CTP

and show that the CTP is PSPACE-complete. In Chapter 4 we discuss de-

compositions of the CTP, and introduce the so called ”partition framework”.

In Chapter 5 we introduce CTP-Tree, and implement some of the techniques

gained in Chapter 4 to provide optimal solutions for special CTP-Tree in-

stances. In Chapter 6 we introduce a variant of multi-agent CTP called

Repeated-CTP, and provide an optimal solution for Repeated-CTP with a

disjoint paths graph.

4



Chapter 2

Background

2.1 Notation

Graphs. A graph G is an ordered pair (V,E) where V is the set of vertices,

and E ⊆ V ×V is the set of edges. A graph G′ = (V ′, E ′) is called a subgraph

of G = (V,E) if V ′ ⊆ V , and E ′ ⊆ E. A weighted graph is a graph with a

(non-negative) weight function w : E → <≥0 over the edges. We denote the

set of edges incident on a vertex v by Ev.

Trees. A (rooted) tree T = (V,E) is a connected acyclic graph, with a

designated vertex r ∈ V called the root . The sequence of vertices that form

a path from the root to v is called the trunk of v. That is, Hv = (v0, · · · vl) is

the trunk of v if Hv form a simple path in T , v0 = r, and vl = v. The splitting

vertex of vertices v and u with trunks Hv = (v0, · · · vl), and Hu = (u0, · · ·uj)
is the maximum k ≥ 0 such that vk = uk.

For a tree T and u, v ∈ V , if u 6= v, and v is in the trunk of u, then v is

called an ancestor of u, and u is called a descendant of v. We also say u is

reachable from v. If v is an ancestor of u and (v, u) ∈ E, then v is called the

parent of u, and u is called a child of v. Vertices in T that have the same

parent are called siblings . If u is a child of v, and z is a child of u, then z

is called a grandchild of v, and v is the grandparent of z. The parent of u is

denoted by Parent(u). If v = Parent(u), then (v, u) is called an outgoing

5



2. Background

edge of v and an incoming edge of u. An intermediate vertex in T is a vertex

with at least 2 outgoing edges. We define a partial order �T over V ×V such

that u �T v if u is a descendant of v. If u �T v then the distance from v to

u is the number of edges in the simple path from v to u.

A leaf in a tree T is a vertex without children. The depth of a vertex

v ∈ T , denoted by depth(v), is the number of vertices in the trunk of v

minus 1. Note that depth(r) = 0. Depth(T ), the depth of the tree, is defined

to be maxv∈Tdepth(v). The height of a vertex v, denoted by height(v), is

the largest distance from v to a leaf l such that l �T v. The height of T ,

Height(T ), is defined to be the height of the root, height(r). Rank(v) is

the set of all vertices u ∈ T for which depth(u) = depth(v). A balanced

tree is a tree in which every two vertices of the same depth have the same

height. A cut in T is a set S ⊆ T such that u 6� v and v 6� u for every

u, v ∈ S. S is a maximal cut in T , if S is a cut in T , and every vertex v 6∈ S
is either an ancestor or a descendant of a vertex in S. For a vertex v ∈ V ,

T (v) = {u|u � v} is the subtree of T with a root v. If v 6= r, then the

subtree T Par(v) is defined to be T (v) with an additional vertex Parent(v)

and an additional edge (Parent(v), v). The size of the tree T is the number

of vertices in T .

Functions. Given functions f, f ′ from A to <, we say that f ′ ≤ f is f ′(a) ≤
f(a) for every a ∈ A. For a function f : A→ B, and A′ ⊆ A, the restriction

of f to A′ is the function f � A′ : A′ → B where (f � A′)(a) = f(a) for all

a ∈ A′.

2.2 The Canadian Traveler Problem

The Canadian Traveler Problem (CTP), first defined by Papadimitriou &

Yannakakis [31], is a tuple (G, s, t, p, w), where G = (V,E) is a finite con-

nected undirected weighted graph, with a source vertex s, and a target vertex

t. Every edge e ∈ E has a non-negative cost w(e), and a probability (inde-

pendent for all the edges) p(e) of being blocked. The probability that e is

unblocked is denoted by q(e) = 1−p(e) . Starting at s, an agent can traverse

6



2.2. The Canadian Traveler Problem

unblocked edges for a cost of w(e). The status of an edge (blocked,unblocked)

is revealed to the agent only when the agent arrives at a vertex incident on

that edge, and this status of the edge remains fixed subsequently. The goal

of the agent is to reach t while minimizing the total travel cost, which is

the sum of the cost of the edges that the agent traversed to reach vertex t.

As the exact travel cost is uncertain until t is reached, the task is to devise

a policy that minimizes the expected travel cost. Such policy is called an

optimal policy

s t

ue0

e1

e2

1

1|p(e1)

10

Figure 2.1: A simple CTP instance. w|p denotes cost | blocking probability.

For example, Figure 2.1 depicts a simple CTP instance. The agent at s

has two ”reasonable” policies to choose from: the first policy, π1, is to reach

t by traversing the unblocked edge e2 for a cost of 10. The expected cost

of π1 is 10. The second policy, π2, is to traverse e0 and observe e1; if e1 is

unblocked, traverse e1 and reach t. However, if e1 is blocked, then traverse

e0 back to s and reach t by traversing e2. The expected cost of π2 is

1 + (1− p(e1)) + p(e1)(1 + 10)

Other policies in which the agent traverses e0 back and forth regardless

of whether e0 is unblocked, are clearly not optimal. This example is a simple

case of the CTP on disjoint path graphs, discussed in Section 2.5. In this

example π1 is optimal if and only if

10 ≤ 1 + (1− p(e1)) + p(e1)(1 + 10)

that is if and only if p(e1) ≥ 0.8.

Since the size of an optimal policy is potentially exponential in the size

7



2. Background

of the problem description, we state that the objective in the CTP is finding

the first move in an optimal policy. The CTP can also be stated as the CTP

decision problem stated as follows. Given an instance of the CTP, and an

edge e incident on s, does there exist an optimal policy where traversing e is

the first move?

The Canadian Traveler Problem is essentially a problem of sequential

decision making under uncertainty. Therefore we next give definitions of

models for decision making under uncertainty, followed by the description of

the CTP as such a model.

2.3 Decision making under uncertainty

We repeat the definitions of Markov Decision Process (MDP), and Partially

Observable Markov Decision Process (POMDP) [36, 19, 1]. We then give the

definition of Deterministic-POMDP (Det-POMDP), which is a special case

of POMDP [26, 8].

2.3.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a specification of a sequential deci-

sion problem for a fully observable environment with a Markovian transition

model, and additive rewards. Formally, an MDP M is a tuple (S,A, T,R)

defined as follows. S is a (finite) set of configurations of the environment

called states . A is a (finite) set of actions , which can be performed at vari-

ous states. T : S×A×S → [0, 1] is the transition function, where T (s, a, s′)

is the probability of reaching state s′ if action a is performed in state s. We

assume that the transitions are Markovian, in the sense that the probability

of reaching s′ from s depends only on s and a, and not on a history of ear-

lier states. Finally, R : S × A × S → < is called a reward function, where

R(s, a, s′) is the reward obtained when reaching state s′ from state s by per-

forming action a. Note that this reward can be either negative or positive,

but must be bounded. The initial state of the environment is denoted by s0.

A solution to an MDP, called a policy , is a function π : S → A, which

8



2.3. Decision making under uncertainty

is a specification of what action the agent should perform in every possible

state. We call the sequence of states derived by actions performed so far an

environment history of the policy. The value of a policy π is measured by

the expected utility over the possible environment histories generated by π,

starting from s0. An optimal policy π∗, is a policy that yields the highest

expected utility. Sometimes the reward function is a negative cost function,

and then an optimal policy is defined to be a policy that yields the lowest

expected cost, called the optimal cost .

For an MDP M , we define a horizon as the number of time steps until M

terminates, where every action performed by the agent can be considered as

a time step. If the horizon is bounded, we say M is a finite horizon MDP. In

a finite horizon MDP, the optimal action in a given state is time dependent.

If, on the other hand, the horizon of M is unbounded, M is called an infinite

horizon MDP. In an infinite horizon MDP, there is no reason to act differently

in the same state at different times. Hence the optimal action in every given

state depends only on the current state.

A special case of an infinite horizon MDP is where every optimal policy

terminates after a finite number of states with probability 1, but the number

of steps until termination is uncertain, and unbounded [1]. Such MDP is

called an indefinite horizon MDP. In an indefinite horizon MDP, terminal

states are defined. A set of terminal states is a subset K ⊆ S in which for

every k ∈ K, and a ∈ A, we have T (k, a, k) = 1, and R(k, a, k) = 0. The

Canadian Traveler Problem is a special case of an indefinite horizon MDP.

Given a policy π, the utility of a state sequence [s0, s1, · · · ] is

Uπ([s0, s1, · · · ]) =
∞∑
t=0

γtR(st, π(st), st+1) (2.1)

where γ ∈ [0, 1]. This utility is called discounted reward and has a dis-

count factor γ. For γ = 1 the utility is called additive (undiscounted) reward.

Then given a policy π for an MDP, The utility for every state, denoted by

Uπ(s), can be computed by using the Bellman equation [4], and we have:

Uπ(s) =
∑
s′

�
T (s, π(s), s′)

�
R(s, π(s), s′) + γU(s′)

��
(2.2)

9



2. Background

The utilities of the states are assigned iteratively, and are updated until

they finally converge to a unique solution, V π(s), for every state. The ex-

pected cost of π is defined to be V π(s0), and is denoted by C(π). Then a

policy π∗ for an MDP M is an optimal policy if and only if C(π∗) ≥ C(π)

for every policy π for M . In case of a cost function, π∗ is optimal if and only

if C(π∗) ≤ C(π) for every policy π for M .

When computing the utility of a state, or of a state sequence, the discount

factor is usually 1 in a finite horizon MDP, and less than 1 in an infinite

horizon MDP - so the utility computations in Equations (2.1), and (2.2)

converge. However, in an indefinite horizon MDP, the discount factor can

be 1, as we are interested only in policies that terminate after a finite time;

thus the utility computations converge.

2.3.2 Partially Observable Markov Decision Process

(POMDP)

In MDP we assume that the environment is fully observable; that is - the

agent always knows the state of the environment. Combined with the Marko-

vian assumption, an optimal policy depends only on the current configuration

of the environment. However, when the environment is partially observable,

the agent does not necessarily know the state of the environment; therefore

a different type of model is needed.

A Partially Observable Markov Decision Process (POMDP) , is a spec-

ification of a sequential decision problem, much like MDP, with several ad-

ditions. Formally a POMDP is a tuple M = (S,A, T,R, Z,O, b0), where

(S,A, T,R) is an MDP called the underlying MDP of M . In addition, Z is a

(finite) set of elements called observations , with an observation distribution

function O : S × A × Z → [0, 1] such that O(s, a, o) is the probability of

receiving observation o when the state s is reached after performing action

a.

By receiving observations after performing an action, the agent obtains

some knowledge about the true state of the environment. This knowledge is

10



2.3. Decision making under uncertainty

represented as a belief state, which is a probability distribution over the set

of states S. For a belief state b, and a state s, b(s) represents the probability

that the environment is in state s. The initial belief state is denoted by b0.

The belief state space of M is denoted by BM . As the agent does not know

the exact state of the environment, he must perform actions based on his

current belief state of the environment.

Let p(o|a, b) be the probability of receiving observation o, once action a

was performed in belief state b. Then

p(o|a, b) =
∑
s′∈S

�
O(s′, a, o)

∑
s∈S

�
T (s, a, s′)b(s)

��
(2.3)

Given a belief state b, and an observation o received after performing

action a, the new belief state, denoted by boa , can be computed as follows.

If p(o|a, b) = 0, then boa(s
′) = 0. Otherwise for every state s′,

boa(s
′) =

1

p(o|a, b)O(s′, a, o)
∑
s∈S

�
T (s, a, s′)b(s)

�
(2.4)

Note that boa is a probability distribution over S, and therefore is a belief

state as well.

It is important to note that in an optimal policy for a POMDP M , the

optimal action depends only on the agent’s current belief state [36]. Hence

an optimal policy can be described as π : BM → A, and the process can be

specified as a new MDP N , called the belief-state MDP of M , by using BM ,

as the state space for N . The initial state for N is therefore b0. Thus we

see that solving a POMDP can be reduced to solving an MDP; the utility

of a policy π at a given belief state b is V π(b), and the cost of π, C(π),

is V π(b0). However, as BM is a set of probability distributions over S, the

state space of N can be significantly large, hence MDP algorithms are not

efficient on POMDPs. The problem of solving POMDPs, and even finding

approximately optimal policies, is intractable in the size of the POMDP.
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2. Background

2.3.3 Deterministic-POMDP

A special case of POMDP, called Deterministic POMDP (Det-POMDP),

is when the actions and the observations of the POMDP model are both

deterministic. First introduced by Littman [26], Det-POMDP captures many

important problems, one of which is the CTP. The following formal definition

of Det-POMDP is due to Bonet [8].

A Deterministic POMDP is a POMDP M = (S,A, T,R, Z,O, b0) with

the following restrictions.

1. The transition function T is deterministic. That is, there is a unique

state that is reached after an action a is performed in a state s. For-

mally, for every state s, and action a, there is a state s′ such that

T (s, a, s′) = 1.

2. The observation function O is deterministic. That is, there is a unique

observation that is received after reaching a state s by performing action

a. Formally, for every state s, and an action a, there is an observation

o such that O(s, a, o) = 1.

3. M has an indefinite horizon. The set of terminal states of M is denoted

by K.

In a Det-POMDP a cost function is used instead of a reward function.

Note that as the actions and observations in Det-POMDP are deterministic,

the only source of uncertainty in Det-POMDPs comes from the initial belief

state. However, the belief-state MDP representation of a Det-POMDP is no

longer deterministic.

For a belief state b, and an action a, we define a distribution ba, called an

intermediate belief state such that for every s′ ∈ S,

ba(s
′) =

∑
s∈S

T (s, a, s′)b(s) (2.5)

No actions are preformed in intermediate belief states as they are changed

when observations are received. As the observations are deterministic as well,

then for a state s and an observation o ∈ Z, we have:
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2.3. Decision making under uncertainty

boa(s) =

0, if p(o|a, b) = 0 or O(s, a, o) = 0;

ba(s)
p(o|a,b) , otherwise.

(2.6)

Let sup(b) be the support of a belief state b, meaning sup(b) = {s ∈
S | b(s) > 0}. We denote the set of actions that the agent can perform in

state s by As ⊆ A. For a belief state b we define Ab =
⋂
s∈sup(b) As as the set

of actions that can be performed in belief state b.

We say a belief state b′ is reachable from a belief state b if b′ is reached

from a consecutive series of actions and observation that starts at b. We say

b′ is reachable from a set of belief states B1 if there is a belief state b ∈ B1

such that b′ is reachable from b. We say b′ is reachable in a policy π from

b, if b′ is reachable from b through a series of actions and observation that

starts at b, in which every belief state is reached after performing an action

in π, and receiving a certain observation. We denote by BM(b) the set of

belief states in BM that are reachable from a belief state b by performing

only actions from A. Similarly, we denote the set of belief states that are

reachable in a policy π from the belief state b, by BM(b, π). We denote a

partial order ≤π on BM(b0, π) such that b′ ≤π b iff b′ ∈ BM(b, π), that is b′ is

reachable from b in π. Finally, we say belief states b, b′ are separated in π if

b 6≤π b′ and b′ 6≤π b.

2.3.4 Weighted AND/OR Trees

A Weighted AND/OR tree (W-AND/OR tree) is a weighted directed tree

T = (V,E, c, p, r) . V is set of nodes in T , and E ⊆ V × V is a set of arcs in

T 1. In addition we have the following notations.

1. V = VAND ∪ VOR, where VAND (called AND-nodes), and VOR (called

OR-nodes) are finite, and disjoint sets of nodes. r ∈ VOR is the root

of T .

2. E = EAND ∪ EOR where EAND ⊆ (VAND × VOR) (called AND-arcs),

1Note that the graph elements in the CTP graph are called ”vertices” and ”edges”.
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2. Background

and a EOR ⊆ (VOR × VAND) (called OR-arcs) are finite, and disjoint,

sets of arcs.

3. c is a non-negative cost function defined over the OR-arcs.

4. p is a probability function defined over the AND-arcs, such that for

every n ∈ VAND we have:

∑
(n,n′)∈EAND

p((n, n′)) = 1

Note that this definition of W-AND/OR trees resembles Expectimax

trees, in which the AND nodes are called chance nodes ; see [36].

A Det-POMDP M = (S,A, T,R, Z,O, b0) can be described as a labeled

W-AND/OR tree TM = (V,E, c, p, r, L), such that (V,E, c, p, r) is a W-

AND/OR tree and L is a label function from V to BM , and from E to

A∪Z as follows. L(v) ∈ BM for every node v, L(e) ∈ A for every OR-arc e,

and L(e) ∈ Z for every AND-arc e. TM is constructed as follows:

• L(r) = b0.

• If v ∈ VOR then the outgoing arcs of v are OR-arcs stated as follows.

For every action a ∈ Ab, where b = L(v), there is a single outgoing

OR-arc e = (v, v′), such that v′ ∈ VAND, L(e) = a, and L(v′) = ba.

The OR-arcs are also called action-arcs , or arcs for action a when

specifically related to an action a. We set

c((v, v′)) =
∑
i,i′∈S

b(i)R(i, a, i′)T (i, a, i′) (2.7)

• If v ∈ VAND then the outgoing arcs of v are AND-arcs stated as follows.

For every observation o that can be received at L(v) = ba, there is a

single outgoing AND-arc e = (v, v′), such that v′ ∈ VOR, L(e) = o,

and L(v′) = boa. The AND-arcs are also called observation arcs , or arcs

for observation o when specifically related to an observation o. We set

p(e) = p(o|a, b).
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2.3. Decision making under uncertainty

Next, we define the policy tree Tπ for a policy π for M . A subtree Tπ of

TM describes a policy π for M if:

• r ∈ Tπ.

• If n ∈ Tπ is an AND node, then all the outgoing arcs of n are in Tπ.

• If n ∈ Tπ is an OR node, then exactly one of the outgoing arcs of n is

in Tπ. If L(n) = b then the outgoing arc of n is an arc for the action

π(b).

As the sets of observations and actions are finite, we have that Tπ is well

defined. All the policies throughout this work terminate after finite time;

therefore Tπ is considered finite 2. We now describe the expected cost C(π)

of π. For every node v in Tπ, V π(v) is defined recursively as follows:

V π(v) =


0, if v is a leaf∑

(v,u)∈E(p((v, u))V π(u)), if v ∈ VAND
c((v, u)) + V π(u), if v ∈ VOR

(2.8)

Then C(π) = V π(r).

Finally, we provide a formal definition to a ”partial policy”. Recall

that T (v) is the subtree of T with a root v. For a Det-POMDP M =

(S,A, T,R, Z,O, b0) and b ∈ BM , letMb be the Det-POMDP (S,A, T,R, Z,O, b).

Note that Mb is indeed a Det-POMDP, BMb
= BM(b), and if L(v) = b then

TMb
= T (v). Now assume that b ∈ BM(b0, π) for a given policy π for M .

Then BM(b, π) ⊆ BMb
, and Tπ(v) describes a policy πb for Mb. πb is called a

partial policy of M . From Equation (2.8), we have that C(πb) = V π(v).

Although two distinct nodes v, v′ can be labeled by the same belief state

b, it follows by construction that T (v) and T (v′) are identical, as well as Tπ(v)

and Tπ(v′); therefore V π(v) = V π(v′). For this reason, and as Tπ is finite, we

may assume that if u, v ∈ Tπ and u is a descendant of v then L(u) 6= L(v).

2Policies in the CTP that do not terminate are clearly not optimal.
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Claim 2.3.1 If π∗ is an optimal policy for a Det-POMDP M , and b ∈
BM(b0, π

∗), then π∗b is an optimal policy for Mb.

The proof of claim 2.3.1 follows easily from Equation 2.8. In Appendix A

we give a detailed proof in which we use backward induction along the trunk

of a vertex v ∈ Tπ with L(v) = b. This technical method appears in several

proofs throughout this work; we refer the reader to this proof for the exact

technical details.

2.4 Det-POMDP definition for the CTP

Given a CTP instance I, we define the following Det-POMDPMI = (S,A, T,R, Z, 0, b0)

as follows:

• The set of states S is defined to be V ×∏
e∈E{blocked, unblocked}. For

every edge e, Ye : S → {blocked, unblocked} is a function in which Ye(l)

denotes the status of edge e in state l. If Ye(l) = blocked (respectively

Ye(l) = unblocked), we say that e is blocked (respectively unblocked)

in l. In addition, loc : S → {v1, · · · , vn} is a function in which loc(l)

denotes the location of the agent in state l. If loc(l) = v, we say that

the agent is at vertex v in state l. A terminal state, henceforth called a

goal state, is defined to be any state in which the agent is at vertex t.

• For each edge e ∈ E, we define an action Move(e). Given states

l, l′, and an action a = Move(e), where e = (v, w), we define the

transition function, T , as follows. T (l, a, l′) = 1 if e is unblocked at l,

Ye′(l) = Ye′(l
′) for every edge e′ ∈ E, and in addition loc(l) = v and

loc(l′) = w. Otherwise T (l, a, l′) = 0.

• Given states l, l′, and an action a = Move(e) for some e ∈ E, let

R(l, a, l′) = w(e) in all cases where T (l, a, l′) = 1, and 0 otherwise.

• The set of observations Z is a set of subsets of {(e, i) | e ∈ E, i ∈
{blocked, unblocked}}. For a state l, a move action a, and an observa-
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2.4. Det-POMDP definition for the CTP

tion o, the observation distribution O(l, a, o) is :

O(l, a, o) =

1, if loc(l) = v, and o = {(e, i) | e ∈ Ev, i = Ye(l)}
0, otherwise.

• The initial belief state, b0, is defined as follows. If loc(l) 6= s then

b0(l) = 0. Otherwise, let Eb = {e ∈ E | Ye(l) = 0} and Eub = {e ∈
E | Ye(l) = 1}. Then

b0(l) =
∏
e∈Eb

p(e)
∏

e∈Eub
(1− p(e)) (2.9)

We abuse notation by denoting the elements of a Det-POMDP MI , for a

CTP instance I, as elements of I. For example, we denote the belief state

space of MI by BI rather than BMI
.

An edge e is blocked (respectively unblocked) in a belief state b if e is

blocked (respectively unblocked) in l for every state l ∈ sup(b). An edge that

is neither blocked nor unblocked in b is unknown in b. Likewise, we say the

agent is located in v in b if loc(l) = v for every state l ∈ sup(b). We define

a partial function Loc : BI → V such that Loc(b) = v when the agent is

located in v in b. If Loc(b) = t then b ∈ BI is called a terminal belief state.

As a terminal belief state is reached after performing an action, we have that

all terminal belief states are intermediate belief states. Therefore, if Tπ is

a policy tree for a policy π for I, then the leaves of Tπ are all AND-nodes.

Unless mentioned otherwise, the edges incident on s are unblocked in every

CTP instance.

For example, Figure 2.2 describes a Det-POMDP representation for the

CTP instance I in Figure 2.1, in a form of a Weighted And/OR Tree. The

square nodes are OR-nodes, the round nodes are AND-nodes. Every ter-

minal belief state (in which the agent is for certain in t) is in bold. Two

actions are allowed at the initial belief state b0: move(e0) and move(e2). If

the action move(e0) is performed, for a cost of w(e0), then two observations

are obtained: o1: ”e1 is unblocked”, and o2: ”‘e1 is blocked”. o1 is obtained

17
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with probability 1− p(e1), and o2 with probability p(e1), and so on. Figure

2.3 describes the following policy for I: traverse e0 and observe e1; if e1 is

unblocked, traverse e1 and reach t. However, if e1 is blocked, then traverse

e0 back to s and then reach t by traversing e2.

b0

b2

b3

b1

b4

b5

b1 b2

b5b6

b7

move(e0)

move(e1)

move(e2)

move(e0)

move(e2)move(e2)

move(e0)

move(e0)move(e0)

o1 : e1 = u

r

v2 v4 v6

v8 v10

v16 v20

v1 v3

v5 v7 v9

v11 v13 v15 v19

o2 : e1 = b

Figure 2.2: A Det-POMDP representation of the CTP instance in Figure
2.1. The square nodes are OR-nodes, the round nodes are AND-nodes.

Note that every state includes the specific location of the agent and the

exact status of each edge. Therefore the size of the state-space of the CTP

is at most V × 2|E|.

Alternative representations for belief states of the CTP. The status

(blocked,unblocked,unknown) of an edge e in b is denoted by b|e and is called

the belief status of e. Given the status of the edges at a belief state b, we can

compute b(l), for a state l, as follows. b(l) = 0 if at least one of the following

holds:
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b0

b2b1

b5

move(e0)

move(e1)move(e0)

o1 : e1 = u

r

v4 v6

v3

v5 v9

o2 : e1 = b

b3

b6

move(e2)

v8

v11

Figure 2.3: A policy description for the CTP instance I.

• loc(l) 6= Loc(b).

• b|e = blocked, and Ye(l) = unblocked.

• b|e = unblocked, and Ye(l) = blocked.

Otherwise, let E1 = {e ∈ E | b|e = unknown and Ye(l) = blocked}, and

E2 = {e ∈ E | b|e = unknown and Ye(l) = unblocked}. Then we have

b(l) =
∏
e∈E1

p(e)
∏
e∈E2

(1− p(e)) (2.10)

Note that Equation 2.9 is a special case of Equation 2.10.

Lemma 2.4.1 Let I be a CTP instance, and let b, b′ ∈ BI be belief states

such that Loc(b) = Loc(b′). Suppose that b|e = b′|e for every edge e ∈ E.

Then b = b′.

Proof: Let b, b′ ∈ BM where Loc(b) = Loc(b′). Then from equation

2.10, b(l) = b′(l) for every state l in which loc(l) = Loc(b), and otherwise

b(l) = b′(l) = 0. Therefore b = b′.

2
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Using Lemma 2.4.1, we can now uniquely describe every belief state b as

a tuple of size |E| + 1, which contains the belief status of every edge, plus

Loc(b). This tuple is henceforth called the variables-status representation of

a belief state. Therefore the size of the belief state space is at most V × 3|E|.

As the status of every edge remains unchanged, once its status is revealed,

we make the following claim:

Claim 2.4.2 Let π be an optimal policy, with OR-nodes z1, z2 ∈ Tπ, such

that z1 6� z2 and z2 6� z1. Let b1 = L(z1) and b2 = L(z2). Then b1 6= b2.

Proof: Let z ∈ Tπ be the splitting node for z1, z2 (note that z must be an

AND-node). Denote L(z) by ba for a belief state b and an action a. Therefore

there are observations o1 6= o2 received in ba, for which b1 is reachable in π

from bo1a , and b2 is reachable in π from bo2a ; see Figure 2.4. As o1 6= o2, there

is an edge e ∈ ELoc(ba) for which e is blocked in o1 and is unblocked in o2. As

the status of e remains unchanged, we have that b1|e 6= b2|e, which implies

from Lemma 2.4.1 that b1 6= b2.

2

b

a

ba
o1o2

bo1abo2a

b1b2

Figure 2.4: As o1 6= o2 we have that b1 and b2 do not have the same variables-
status representation.

The status of the edges at a belief state b can also define a blocking

probability function pb over the set of edges as follows. If an edge e is blocked

20



2.4. Det-POMDP definition for the CTP

in b, then pb(e) = 1. If e is unblocked in b, then pb(e) = 0. If e is unknown

in b, then pb(e) = p(e). For the initial belief state b0 we have pb0(e) = p(e)

for every e ∈ E. Therefore for a CTP I = (G, s, t, p, w), every belief state b

admits a CTP instance Ib = (G,Loc(b), t, pb, w) in which the graph layout of

I and Ib is the same, and the only difference is in the location of the agent

and the blocking probability function.

Weather configuration of CTP . A macro-action is defined as a con-

ditional sequence of actions that the agent can perform. Following [12], a

possible status description (blocked or unblocked) of the entire set of edges,

is called a weather . Denote the set of all possible weathers by W , and the

probability that weather w occurs by pw. Therefore by defining C(π,w) to

be the cost of π given a specific weather w, we can compute C(π) as follows.

C(π) =
∑
w∈W

pwC(π,w) (2.11)

This alternative description of the cost of a policy is used throughout this

work.

Another important observation made by [12] is as follows. We say a

vertex v is explored in a belief state b if Ev, the incident edges on v, are all

known in b. Note that the only uncertainty in the status of the edges is in the

edges that are incident on vertices that are not yet explored. The explored-

neighborhood of b, denoted by Nex(b), is the set of all vertices u that have

the following property. There is an unblocked path in b from s to u, in which

all the vertices apart from u, are explored in b. Note that u itself can remain

unexplored. The fringe of b, denoted by ∂(b), is defined to be the set of all

non-explored vertices in Nex(b).

Therefore every optimal policy for the CTP can be defined as a set of

macro-actions; each is defined as follows. At every belief state b with Loc(b) =

v, a macro-action Traverse(u) for u ∈ ∂(b), is a consecutive series of actions

Move(e) along the shortest unblocked path {v, v1, · · · , vl}, where vl = u, in

which vi ∈ Nex(b)\∂(b) for every i < l. See Figure 2.5 for an example.
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s

v1

v2
v3

v4
v5

t

v6
u

u

u

ū

ū

u

Figure 2.5: A CTP instance I in a belief state b for MI . Edges with label u are
unblocked edges in b; edges with label ū are blocked edges in b. Unlabeled
edges are unknown edges in b. Then Nex(b) is {s, v1, v2, v4, v6}. ∂(b) is
{v4, v6}. Assume Loc(b) = v2, then the possible macro actions at b are
Traverse(v4), and Traverse(v6).

Default path As throughout this work we are interested in the expected

travel cost, we face a problem of defining the objective when all the paths

from s to t are found blocked. Namely, the expected travel cost can be infi-

nite. This problem can be handled through one of the following approaches.

First, we can assume that every instance has an unblocked traversable path,

called the default path, from s to t, usually with a very large cost. This

default path is traversed if and only if all other paths from s to t are found

blocked. This approach can be thought of as a rescue choice, such as a call

for a helicopter, that the agent must take if no regular path to the goal ex-

ists. A second approach is to assume that such a large cost default path

exists from every vertex to target. Note, however, that these two approaches

yield totally different optimal policies, as in the first approach one has to

keep in mind the cost of retracing to the source vertex before traversing the

default path. A third approach is to consider only instances in which such

an unblocked path from the source to the target exists. Unless mentioned

otherwise, we use the first approach.
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2.5. CTP in a disjoint paths graphs

2.5 CTP in a disjoint paths graphs

We follow the work of [6], and show a polynomial time solution for the

Canadian Traveler Problem on disjoint paths graphs (CTP-DISJ). Although

this variant is a limited case of multi-agent CTP on disjoint path graph (see

Section 6.2), it is important to be familiar with CTP-DISJ at this stage, since

the solution for CTP-DISJ underlies many results presented throughout this

work. A detailed proof for the main theorem in this section, Theorem 2.5.3,

can be found in Section 6.2.

A CTP-DISJ instance is a CTP with a graph constructed from k ≥ 1

paths, denoted by I0, · · · , Ik−1 (see Figure 2.6). Apart from s and t, in which

all the paths meet, all the paths are vertex-disjoint. We assume w.l.o.g.

that at least one path is known to be traversable. Otherwise, we can add a

traversable default path consisting of a single unblocked edge between s and

t with a finite, but very large, cost, which is traversed if and only if all other

paths are blocked.

The length ri of each path Ii is the number of the edges of Ii. The edges

of path Ii starting from s are denoted by ei,j for 0 ≤ j < ri.

For a path Ii, and an edge ei,j, let Wi,j =
∑
l<j w(ei,l) be the cost of the

path Ii up to edge ei,j not including ei,j. Let Wi = Wi,ri be the cost of the

entire path Ii. Define Qi to be the probability of path Ii being unblocked;

(thus Qi =
∏
l<ri q(ei,l), where q(ei,l) = 1 − p(ei,l)), and let Pi = 1 − Qi be

the probability that Ii is blocked.

I0

I1

s t

v0

v1

I2

e0,0 : 1|0

e1,0 : 1|0

e2,0 : 10000|0

e0,1 : 0.5|0.95

e1,1 : 1.5|0.05

Figure 2.6: CTP with disjoint path graph.

We define two macro-actions, through which all optimal policies on disjoint-
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paths graphs can be specified. Both macro actions are defined for an agent

situated at s.

Definition 2.5.1 For a path Ii, macro action TRY (i) is to move forward

along Ii until reaching t; if a blocked edge is encountered, the agent returns

along the path and stops at s. An agent performing a TRY action on a path

is said to be trying the path.

Definition 2.5.2 For a path Ii and an edge ei,j, macro-action INV (i, j)

(meaning investigate) is to move forward along Ii until reaching (without

crossing) ei,j, or a blocked edge, whichever occurs first. In either case the

agent returns to s.

For a path Ii, denote by BC(i) the random variable representing the

backtracking cost of Ii: that is, the cost of traversing Ii, finding Ii blocked,

and returning to s. Since Ii can be blocked anywhere, and the cost to reach

edge ei,j is Wi,j, the expected backtracking cost is:

E[BC(i)] = 2
∑
j<ri

Wi,jp(ei,j)
∏
l<j

q(ei,l) (2.12)

Denote the expected cost of TRY (i) by E[TRY (i)]. Then

E[TRY (i)] = QiWi + E[BC(i)] (2.13)

A policy that consists only of TRY actions, but never uses INV actions

(that is, only backtracks if a blocked edge is revealed), is called committing .

In Chapter 4 we see a generalization of this definition of commitments in the

CTP.

Since a TRY macro action either reaches t or finds a path blocked, it

never makes sense to try the same path more than once, and thus all such

committing policies can be represented by an order of paths to be tried. Let

M be an instance of CTP-DISJ, and let π∗M be a committing policy for M in

which the agent tries the paths in a non-decreasing order of Di = E[TRY (i)]
Qi

.

Assume without loss of generality that the Di are all different, and thus π∗M

is unique. Then the following theorem [6] holds:
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Theorem 2.5.3 π∗M is an optimal policy for M .

Proof outline:

We first show that π∗M is optimal among all committing policies for M .

As every committing policy is a permutation of TRY actions, we see that

given two committing policies, π and π′ for M , such that π′ is obtained from

π by switching TRY (i) with TRY (i + 1), then C(π) < C(π′) if and only if

Di < Di+1.

Next, let ν∗ be an optimal, but not committing policy, for M . We assume

w.l.o.g. that ν∗ is an optimal policy with a minimal number of INV -edges

in Tν∗ among all the optimal policies for M . We can then show that Tν∗

contains a subtree, T , with only one INV -edge, and define a policy ν ′ that is

obtained from ν∗ by replacing T with another tree, T ′, which has no INV -

edges at all. We then show that C(ν ′) ≤ C(ν∗), contradicting the minimal

number of INV -edges in Tν∗ among the optimal policies of M . 2
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Chapter 3

Complexity of the Canadian

Traveler Problem

3.1 The CTP is PSPACE-complete

When originally introduced in [31], two variants of the CTP were examined:

the adversarial variant and the stochastic variant. Both variants were shown

to be in PSPACE. The adversarial variant was shown to be PSPACE-hard by

reduction from QBF. For the stochastic version only #P-hardness was estab-

lished by reduction from the st-reliability problem (as stated in [31]), leaving

the question of PSPACE-hardness open. Apparently proving the stronger re-

sult requires some form of dependency between the edges, achieved “through

the back door” in the adversarial variant. This chapter, published in [14],

settles the question, showing that the CTP is indeed PSPACE-complete. In

fact we show that it is PSPACE-hard to solve the CTP decision problem,

stated as follows: Given an instance of the CTP, and an edge e incident on

s, does there exist an optimal policy where traversing e is the first move?

Membership of this problem in PSPACE was shown in [31], by the general

argument that the CTP is a “game against nature” for which PSPACE al-

gorithms exist. A more detailed argument appears in [14].

We begin with a preliminary known variant, of CTP with dependent

directed edges, CTP-Dep, which allows for a simple proof (first shown in
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3. Complexity of the Canadian Traveler Problem

[14]) of PSPACE-hardness by reduction from QBF. Then, we proceed with

a PSPACE-hardness proof for the “standard” stochastic CTP. Although the

latter result subsumes the PSPACE-hardness of CTP-Dep, proving the de-

pendent CTP result first greatly simplifies the intuition behind the proof of

the standard case.

3.2 Dependent directed CTP is PSPACE-hard

The dependent CTP is a generalization of the CTP where edge blocking

probabilities can be dependent. Therefore, instead of the function p in the

definition of the CTP, we have a general probability distribution in the depen-

dent version. In order to make the reduction simpler, we define the problem

over a directed graph.

Formally, the dependent CTP (called CTP-Dep) is a 5-tuple (G, c, s, t, BN)

with G = (V,E) a directed graph, a cost function c : E → <≥0, s, t ∈ V

are the source and target vertices, respectively, and a distribution model

BN over binary random variables describes the dependency of the blocking

probabilities the edges of E.

As in the CTP, the problem is to find a policy that minimizes the expected

traversal cost from s to t. We assume that BN is specified as a Bayes network

(see [32]) as follows. The Bayes network (Y,A, P ) consists of a set of directed

arcs A between a set of binary random variables Y , so that (Y,A) is a directed

acyclic graph. P describes the conditional probability tables, one for each

y ∈ Y . Note that it is sufficient to show that if the in-degree in the Bayes

network graph (Y,A) is bounded by a constant, then the size of an explicit

representation of a Bayes network, as well as the time to generate it, are low-

order polynomial in the number of random variables. The bounded in-degree

is guaranteed by construction in the proof below.

Theorem 3.2.1 Determining whether there exists an optimal policy for the

CTP-Dep in which a given action is the first move is PSPACE-hard.
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3.2. Dependent directed CTP is PSPACE-hard

Proof. We prove Theorem 3.2.1 by reduction from the PSPACE-complete

problem QBF [16]. Recall that QBF is the language of all true quanti-

fied Boolean formulas in prenex normal form, Φ = ∀x1∃x2...ϕ(x1, x2, ..., xn),

where ϕ is a Boolean formula in conjunctive normal form, with n variables

and m clauses. Every clause contains literals, each consisting of either a

variable or a negated variable. We assume that each clause has at most 3

literals (see [16]). Given a QBF instance Φ, construct a CTP-Dep instance

(GΦ, c, s, t, BN) as follows (see Figure 3.1). GΦ consists of a variables section,

and an exam section. Vertices in the variables section have labels starting

with v or o, and vertices of the exam section begin with r. An always un-

blocked edge (s, t), called the default edge, has a cost of h > 0 defined below

(in Claim 3.2.2). All other edges, unless mentioned otherwise, are zero-cost

edges known to be unblocked. In some cases, the only role such edges have

in the proof is to simplify the notation or the physical layout of the figure,

such as the edges (s, v1) and (v′n, r0).

v1
v′1 v2 v′2s vn v′n

r0

r1r′1

r2r′2
t

t

variables section

exam section

o11 o12 o1m o21 o22 o2m

v21
v22 v2m

v11 v12 v1m
vn1

vn2 vnm

on1 on2 onm

v̄11
v̄12 v̄1m

v̄21
v̄22 v̄2m

v̄n1
v̄n2 v̄nm

ōn1 ōn2 ōnmō11 ō12 ō1m ō21 ō22 ō2m
h

1
1

∀x1 ∃x2 ∃xn

Figure 3.1: Reduction from QBF to CTP-Dep. Note that vertex t appears
twice in order to simplify the physical layout.

The variables section contains a subsection Xi for every variable xi, which

begins at vi and ends at v′i. For every i < n, Xi is connected to Xi+1 through

an edge (v′i, vi+1).

EveryXi contains a true-path (vi, vi1, · · · , vim, v′i), and a false-path (vi, v̄i1, · · · , v̄im, v′i).
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3. Complexity of the Canadian Traveler Problem

If xi is a universal variable (resp. existential variable), the edges (vi, vi1), and

(vi, v̄i1) are called universal edges (resp. existential edges). While the existen-

tial edges are always unblocked, we set the universal edges to have blocking

probability 1/2 and to be mutually exclusive: for each universal variable xi,

exactly one of (vi, vi1), and (vi, v̄i1) is blocked.

In addition, for every 1 ≤ i ≤ n and 1 ≤ l ≤ m, there are edges (oil, vil)

and (ōil, v̄il) called observation edges. These edges are only meant to be

observed, as their source vertices are unreachable. Every observation edge is

blocked with probability 1/2, and the dependency of the observation edges is

defined according to appearance of variables in the clauses of Φ, as follows:

an observation edge (oil, vil) (resp. (ōil, v̄il)) is considered “in” a clause Cl if

xi appears unnegated (resp. negated) in clause Cl. All observation edges that

are “in” the same clause Cl co-occur: they are either all blocked or all are

unblocked (with probability 1/2, as stated above), independent of all other

edges that are not “in” Cl.

The exam section consists of an odd-path (r0, r1, r
′
1, t), and an even-path

(r0, r2, r
′
2, t). In addition construct edges (r1, t) and (r2, t) with cost 1. The

edges (r1, r
′
1) and (r2, r

′
2) are called choice edges. The edge (r1, r

′
1) (resp.

(r2, r
′
2)) is unblocked if and only if the observation edges are unblocked for

an odd (resp. even) number of clauses. Hence exactly one of the choice edges

is blocked. If at least one observation edge in each clause is observed, the

status of the choice edges can be determined with certainty. Otherwise the

posterior blocking probability of each choice edge remains 1/2. A description

of the layout of the related bayesian network BN appears in Appendix B.1.

In order to prove the theorem, it is sufficient to prove the following claim:

Claim 3.2.2 If Φ is true then there is an optimal policy with an expected

cost 0, and the optimal first action is to traverse (s, v1). If Φ is false, then

for every 0 < h < 2−
n
2
−1, the optimal policy is to traverse (s, t) with a cost

of h.

Proof: Suppose first that Φ is true. Then there is a policy for assigning

values to every existential variable xi, each given every assignment to the

universal variables enclosing xi, such that ϕ is true. Following this policy for
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3.3. Complexity of the CTP

each existential variable xi, i.e., traversing edge (vi, vi1) if xi should be true,

and (vi, v̄i1) otherwise, leads (by construction) to following a path such that

at least one observation edge is seen in every clause. Hence, the “exam” is

passed (i.e., the zero-cost unblocked path in the exam section is chosen) with

certainty.

Next, suppose Φ is false. Then there exists an “adversary” policy of

assigning the universal variables for every assignment of the enclosing exis-

tential variables, in which eventually, some clause Cl is false. (as above, such

an adversary policy may only depend on the values of existential variables

enclosing the current universal variable). In that case no edge “in” clause

Cl is observed. Since every assignment of the universal variables occurs with

probability 2−
n
2 (assuming w.l.o.g. that n is even), in these cases the exam is

“flunked” (picking the path where only the expensive edge is unblocked) with

probability 1/2, and thus the total expected cost of starting with (s, v1) is

at least 2−
n
2
−1. Hence, with 0 < h < 2−

n
2
−1, the optimal policy is to traverse

(s, t) if and only if Φ false.

2

Observe that the proof of Theorem 3.2.1 also shows the following:

Corollary 3.2.3 It is PSPACE-hard to determine the expected cost of the

optimal policy in the CTP-Dep.

3.3 Complexity of the CTP

Having shown that the CTP-Dep is PSPACE-hard, we extend the proof to

the “standard” stochastic independent undirected edges CTP.

Theorem 3.3.1 The CTP decision problem is PSPACE-complete.

In order to prove Theorem 3.3.1, we use the same general outline of the

reduction from QBF as in the proof of Theorem 3.2.1. However, in the CTP-

Dep, dependencies and directed edges restrict the available choices, thereby

simplifying the proof. Here we introduce special gadgets that limit choice de
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3. Complexity of the Canadian Traveler Problem

facto, and show that any deviation from these limitations is necessarily sub-

optimal. Policies that obey these limitations are called reasonable policies.

Each such gadget g has an entry terminal Entry(g), and an exit terminal

Exit(g); an attempt to traverse g from Entry(g) to Exit(g) is henceforth

called to cross g. The gadgets operate by allowing a potential shortcut to the

target t; crossing these gadgets may either end up at t, or at Exit(g), with

some probability q(g). The unblocked edges that allow direct access to t are

called shortcut edges. The following invariant follows from the construction

of the CTP graph in Section 3.3.3, and is used throughout the proof of

Theorem 3.3.1.

Invariant 3.3.2 Every gadget g is attached to any other graph component

such that any partially specified policy executed at Entry(g), in which g is

not crossed, has an expected cost of at least 1.

We introduce the gadgets in Sections 3.3.1 and 3.3.2, and the CTP graph

construction in Section 3.3.3. The actual proof of Theorem 3.3.1 is in Section

3.3.4. In the description of the gadgets and the CTP graph, we sometimes

add zero-cost always traversable edges. These edges, which appear unlabeled

in Figures 3.2, 3.3, and 3.4, were added solely in order to simplify the physical

layout as a figure; any u, v connected by such an edge can be considered to

be the same vertex.

3.3.1 Baiting gadgets

A baiting gadget g = BG(u, v) with a parameter l > 1 is a three-terminal

weighted graph

(see Figure 3.2): an entry terminal u = Entry(g), an exit terminal v =

Exit(g), and a shortcut terminal which is always t. The latter terminal is

henceforth omitted in external reference to g, for conciseness.

The baiting gadget consists of N + 1 uniform sections of an undirected

always unblocked path (u, v1, · · · , vN , v) with total cost l. Each intermediate

vertex has a zero-cost shortcut to t with a blocking probability 1/2. In

addition, there is a shortcut edge with cost l from the terminals u, v to t. Set
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3.3. Complexity of the CTP

N = 2dlog2(4l)e − 1. Then the size of g is Θ(l).

As the formal description of a policy is cumbersome, we informally de-

scribe the following policy as a conditional sequence of actions, with condi-

tions being previous locations, actions, and observations.

Let π be the following partially specified policy: when at u for the first

time, proceed along the path (u, v1, · · · , vN , v) to v, taking the zero-cost short-

cut to t whenever possible, but never backtracking to u. From v continue with

any optimal policy. This description of π has an obvious formal interpreta-

tion, which we write out as an example in Appendix B.2.

When at u for the first time, the expected cost of reaching t by executing

π is less than 1, even if we need to take the shortcut edge (v, t) (proved in

Appendix B.2). As the shortcut edge (v, t) costs l, the expected cost of any

optimal policy once at v is no more than l. After reaching v, all the zero-

cost shortcut edges are blocked; therefore g is not retraced by any reasonable

policy. A similar argument holds for retracing to u from other locations along

the path (u, v1, · · · , vN , v). Hence we have:

v1 v2 vN

0| 120| 120| 12

t

u v

l

l
N+1

l

l
N+1

l
N+1

Figure 3.2: A baiting gadget BG(u, v) with a parameter l > 1. Edge label
c | p denotes cost | blocking probability. The optimal policy at u is to cross
the path (u, v1, · · · , vN , v), taking a shortcut edge to t whenever such an edge
is found unblocked. After reaching v, retracing to u in g costs at least l.

Claim 3.3.3 When at u for the first time, under Invariant 3.3.2, π is opti-

mal for a baiting gadget g = BG(u, v) with a parameter l > 1. After reaching

v, it is suboptimal to backtrack to u in g.

33



3. Complexity of the Canadian Traveler Problem

Note that g is actually symmetric w.r.t. u, v. However, since by con-

struction of the CTP graph, every reasonable policy always reaches one des-

ignated terminal u first, we treat g externally as if it were directional. A

precise derivation of the parameters of baiting gadgets appears in Appendix

B.2.

3.3.2 Observation gadgets

An observation gadget g = OG(u, v, o), is a four-terminal weighted graph (see

Figure 3.3): an entry terminal u = Entry(g), an exit terminal v = Exit(g),

an observation terminal o, and a shortcut terminal (again omitted in external

references) that is always t. The observation gadget begins with a baiting

gadget BG1 = BG(u, v1) with a parameter l = L (the global value L is

a problem-dependent value defined below for all the observation gadgets),

which is connected to the “observation loop” beginning with a baiting gadget

BG2 = BG(v1, v2) with a parameter l = 3L/2, a zero-cost edge (v2, v3) with

blocking probability 3/4, and a cost 5L/8 unblocked edge (v3, o). A cost

3L/2 unblocked shortcut edge (v2, t) exists as a part of the baiting gadget

BG2. The observation loop is closed by a cost 5L/8 unblocked edge (o, v4)

and a zero-cost edge (v4, v1) with blocking probability 3/4. From v1, a cost 1

unblocked edge (v1, v
′
1) followed by a baiting gadget BG3 = BG(v′1, u) with

a parameter l = L completes the gadget. Note that as every baiting gadget

is of the size of Θ(L), we have that the size of g is Θ(L).

We next define the path component to which the observation terminal o

that can be connected, and the path edges incident on o that can be observed.

The exam section path is a path (r2, r3, r4, r5, r
′
1, r
′
2) (o is identified with r5)

with the following properties: the edges (r2, r3), (r′1, r
′
2), and (r4, r5) have

zero cost and blocking probability p1, where p1 > 1−2/(3L+1). (r2, r3) and

(r′1, r
′
2) are called guard edges, (r4, r5) is called an observation edge. The edges

(r3, r4) and (r5, r
′
1) are always traversable edges with cost 1. The notations

of the exam section path are chosen to match the description of the CTP

graph construction in Section 3.3.3.
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0| 34

v′1u vBG3

r2 r3 r4 r5 r′1 r′2

3L
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the exam section path

5L
8

5L
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Figure 3.3: An observation gadget OG(u, v, o). Light gray arrows indicate
general traversal direction of the optimal policy π. BG1 and BG3 are baiting
gadgets with a parameter l = L. BG2 is a baiting gadget with a parameter
l = 3L/2.

Invariant 3.3.4 The observation terminal o is either not directly connected

to the rest of the graph, or connected through the exam section path

(r2, r3, r4, r5, r
′
1, r
′
2), in which case o is identified with r5. In addition, o is

allowed to coincide only with observation terminals of other observation gad-

gets.

We see in Section 3.3.3 that Invariant 3.3.4 follows from the construction

of the CTP graph. Let πg be the following partially specified policy for

g: when at u, cross BG1. Then (observing (v1, v4)), cross BG2. If either

(v2, v3) or (v1, v4) is found blocked, reach t by traversing the shortcut edge

(v2, t), which costs 3L/2. However, if both (v2, v3) and (v1, v4) are unblocked,

traverse the path (v2, v3, o, v4, v1, v
′
1) (observing any edges incident on o such

as the observation edge (r4, r5)), and cross BG3. Then from v continue with

any optimal policy.

Claim 3.3.5 Assume L > 8. Then, when at u for the first time, under
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3. Complexity of the Canadian Traveler Problem

Invariants 3.3.2 and 3.3.4, πg is an optimal policy for an observation gadget

g = OG(u, v, o).

Proof outline. First observe that following πg, Invariant 3.3.2 holds for

every baiting gadget in g. Therefore properties of the baiting gadgets ensure

that g is traversed in the correct order. Next, the guard edges (r2, r3) and

(r′1, r
′
2) ensure that it is suboptimal to “escape” from o by traversing edges in

the exam section path. The uncertain edges (v4, v1) and (v2, v3) ensure that

it is suboptimal to enter a previously uncrossed observation gadget from o.

Likewise for a previously crossed observation gadget g̃: entering g̃ through

o is suboptimal because all the baiting gadgets in g̃ have been crossed and

observed to contain no unblocked zero-cost shortcuts.

A detailed derivation of the properties of observation gadgets appears in

Appendix B.3.

3.3.3 CTP graph construction

Having shown the properties of the baiting and observation gadgets, we are

ready to construct the CTP graph: For a QBF Φ with n variables and m

clauses, we constructGΦ in the same general outline as the construction of the

CTP-Dep graph (see Section 3.2) with the following changes (see Figure 3.4).

The exam section is a path of 5(m+1) vertices {rij | 1 ≤ i ≤ m+1, 1 ≤ j ≤ 5},
with an additional vertex r0, as follows. For every 0 < i ≤ m + 1, (ri1, r

i
2),

(ri2, r
i
3), and (ri4, r

i
5) have zero cost and blocking probability p1, except from

(rm+1
4 , rm+1

5 ), which has zero cost and is always traversable. rm+1
5 is identical

to t. (ri1, r
i
2), and (ri2, r

i
3) are called guard edges. The edge (ri4, r

i
5) is called

a clause edge, and is denoted by ei. The edges (ri3, r
i
4), and (ri5, r

i+1
1 ) are

always traversable cost 1 edges. In addition, there is an always traversable

cost 1 edge (r0, r
1
1), as well as an always traversable cost L shortcut edge

(r0, t). In order to guarantee correct operation of the observation gadgets,

we disallow reasonable policies to traverse exam edges too early while crossing

the variable section. This is done by visiting the initially uncertain guard

edges only later via a section called the guards section, which consists of
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ō11 ō12 ō1m

v̄21

v̄2mv̄′22
v̄′2m
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Figure 3.4: The CTP graph construction for Φ = ∀x1∃x2 · · · (x̄1 ∨ x̄2)∧ (x̄1 ∨
x2) · · · . BG - a baiting gadget. OG - an observation gadget. Light gray
arrows indicate the general traversal direction of the optimal policy when Φ
is true.

a sequence of m + 2 baiting gadgets BG(zi, zi−1), 0 < i ≤ m + 2, with a

parameter l = L that visits ri2 from every zi (except from zm+2).

The variables section is constructed as for CTP-Dep, except that the di-

rected edges (v′i, vi+1) are replaced by baiting gadgets BG(v′i, vi+1) with a pa-

rameter l = L. For each universal variable xi the universal edges (vi, vi1), and

(vi, v̄i1) are cost 1 edges with blocking probability 1/2. For each existential

variable xi, the existential edges (vi, vi1) and (vi, v̄i1) are always traversable

edges with cost 1. Inside each true-path, every (vij, oij), (vij, vi(j+1)) pair is

replaced by an observation gadget g = OG(vij, v
′
ij, oij). (v′ij, vi(j+1)) are al-

ways unblocked zero-cost edges added for clarity. The observation vertex oij

is identified with the vertex rj5 incident on the appropriate clause edge ej in
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the exam section. That is, if xi appears unnegated in clause j, then oij of

the true-path is identified with rj5 in the exam section. Likewise respectively

for all the edges in the false-paths. Note that Invariant 3.3.2 holds for all

the baiting gadgets, and observation gadgets in GΦ, and that Invariant 3.3.4

holds for all the observation gadgets in GΦ.

For example, Figure 3.4 demonstrates the reduction for Φ = ∀x1∃x2 · · · (x̄1∨
x̄2) ∧ (x̄1 ∨ x2) · · · . The variable x1 appears negated in clause 2, so in GΦ

the vertex ō12 at the section X1, and the vertex r2
5 of the exam section are

connected by an unlabeled edge, hence the clause edge e2 = (r2
4, r

2
5) can

be observed from the observation gadget OG(v̄12, v̄
′
12, ō12) when traversing

the false path of X1. The connection of other observation gadgets can be

explained similarly.

3.3.4 Proof of Theorem 3.3.1

Given a QBF Φ with n variables and m clauses, we construct GΦ as in Section

3.3.3. Set L = 8m+16 and p1 = 1−2−dlog2( 3L+1
2

)e. We show that it is optimal

to traverse (s, v0) if and only if Φ is true.

Unless stated otherwise, we henceforth consider only reasonable policies

for GΦ that do not begin with the default action of traversing (s, t). Due to

properties of the gadgets (Claims 3.3.3, 3.3.5) we have that by following any

reasonable policy for GΦ, Invariants 3.3.2, and 3.3.4 hold for all baiting and

observation gadgets. Therefore any reasonable policy π for GΦ must follow

the restrictions in Table 3.1, as any other action is suboptimal.

Table 3.1: Reasonable policy actions in π.
Location Action
v′i, for i < n cross BG(v′i, v1+1)
vi, for i ≤ n, go to vi1 or v̄i1
vil, for i ≤ n, cross OG(vil, v

′
il, oil)

v̄il for i ≤ n, cross OG(v̄il, v̄
′
il, ōil)

zi, for 0 < i ≤ m+ 2 cross BG(zi, zi−1)
r0 pass exam or take shortcut

Most of these restrictions are immediate consequences of executing opti-
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mal policies at the baiting and observation gadgets (see Appendix B.2 and

Appendix B.3 for details). The following claim, proved in Appendix B.4,

shows the actions of any reasonable policy for GΦ at r0.

Claim 3.3.6 At r0, any reasonable policy acts as follows:

• If all the edges in the exam section were observed to be unblocked, cross

(r0, r
1
1, · · · , rm+1

4 , t) until reaching t for a cost of 2(m+ 1).

• Otherwise, cross the cost L shortcut edge (r0, t).

Therefore, reasonable policies for GΦ differ only in the choices made in

the universal and existential edges, and in the choice at r0, which is either

to traverse the exam section if all clause edges were observed, or otherwise

take the expensive shortcut (r0, t).

Now recall that for every policy π for GΦ we have

C(π) =
∑
w∈W

pwC(π,w) (3.1)

where W is the set of all possible weathers for GΦ (see Section 2.5). Parti-

tion W into full-trip weathers W f (π), in which r0 is reached while executing

π; and shortcut weathers W s(π) in which r0 is not reached due to taking a

shortcut edge to t before reaching r0. Then:

C(π) =
∑

w∈W s(π)

pwC(π,w) +
∑

w∈W f (π)

pwC(π,w) (3.2)

Let πT be a policy for GΦ such that in every subsection Xi of the variables

section, whenever possible, the true-path is always chosen. Define:

Dst =
∑

w∈W s(πT )

pwC(πT , w) (3.3)

As all the true-paths and false-paths of all the variables section are symmetric

in the number of observation gadgets and other edges, there is a bijection
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gπ : W s(π)→ W s(πT ) such that pw = pgπ(w) and C(π,w) = C(πT , gπ(w)) for

every w ∈ W s(π). Hence we have:

∑
w∈W s(π)

pwC(π,w) = Dst (3.4)

and therefore

C(π) = Dst +
∑

w∈W f (π)

pwC(π,w) (3.5)

Again, due to symmetry, and the properties of the baiting and observation

gadgets (Claims 3.3.3, 3.3.5), the total cost from s to r0 while executing π

in any weather w ∈ W f (π) is independent of w. We denote this cost by Dpt,

and can compute it simply by summing the cost of traversing a path from s

to r0 through the variables section and guards section, assuming that r0 is

reached. More precisely, see that in every weather w ∈ W f (π), every crossed

baiting gadget has a cost of L, and every crossed observation gadget has a

cost of (19L + 4)/4. Then, as the number of crossed observation gadgets is

mn, with an additional n baiting gadgets (v′i, vi+1) need to be crossed, as

well as m+ 1 baiting gadgets of the guards section, we have that

Dpt = 1 +

�
2 +

(19L+ 4)m

4

�
n+ (n+m+ 1)L (3.6)

Now, according to Claim 3.3.6, the cost of reaching t from r0 is either 2(m+1)

(if the exam section is known to be completely unblocked), or L > 2(m+ 1)

(taking the shortcut (r0, t), if some edges in the exam section are known to

be blocked, or some such unknown edges remain). Hence for any full-trip

weather w, C(π,w) is either Dpt + L, or Dpt + 2(m+ 1).

Let Prt = (1− p1)3m+2 be the probability that all the edges in the exam

section are unblocked. Let P π
Φ ∈ [0, 1] be the probability that not all the

clause edges of the exam section were observed in a full-trip weather by fol-

lowing π (this probability depends on the formula Φ). Then, with probability

Prt(1− P π
Φ) all the edges of the exam section were observed and were found

unblocked before reaching r0. Denote by Pr0 the probability of reaching r0 by
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3.3. Complexity of the CTP

executing π. Again, due to symmetry of the baiting and observation gadgets,

Pr0 is independent of π. We get:

∑
w∈W f (π)

pwC(π,w) = Pr0

�
Dpt + P π

ΦL+ (1− P π
Φ)
�
Prt2(m+ 1) + (1− Prt)L

��
(3.7)

And therefore

C(π) = Dst + Pr0

�
Dpt + P π

ΦL+ (1− P π
Φ)
�
Prt2(m+ 1) + (1− Prt)L

��
(3.8)

If Φ is true, then, as in the proof of Theorem 3.2.1, there is a reasonable

policy π which follows the variables assignments that satisfy Φ; thus every

clause edge is observed and P π
Φ = 0. Define B0 = C(π) for such a policy π

when Φ is true. Then

B0 = Dst + Pr0
�
Dpt + Prt2(m+ 1) + (1− Prt)L

�
(3.9)

If Φ is false, then, again as in the proof of Theorem 3.2.1, there is an

“adversary” policy of assigning the universal variables for which at least

one clause in Φ is false, for every assignment of the enclosing existential

variables. For every universal variable xi, the probability that exactly one

universal edge is unblocked is 1/4. Therefore, there is a probability of at least

(1
4
)
n
2 for the “adverse case”, where the only universal edge that is unblocked

for each universal variable xi, is consistent with the adversary policy. In

this adverse case not all the clause edges are visited upon reaching r0. Note

that Pr0 already excludes events where both universal edges are blocked for

some variable, thus r0 is not reached. Therefore if Φ is false, then for every

reasonable policy π, P π
Φ > (1

3
)
n
2 . Hence define B1 as follows.

B1 = Dst +Pr0

�
Dpt + 3−

n
2L+

�
1− 3−

n
2

��
Prt2(m+ 1) + (1−Prt)L

��
(3.10)

Then B1 > B0, and if Φ is false, then C(π) ≥ B1. Now let
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3. Complexity of the Canadian Traveler Problem

h = c((s, t)) = B0 + 2−nmPr0 (3.11)

Then B1 > h > B0. Thus the optimal action at s is to traverse (s, t) if

and only if Φ is false.

It remains to show that GΦ is constructed in a time polynomial in the

size of the input. As the size of every baiting and observation gadget is Θ(L),

the CTP graph GΦ contains a polynomial number of vertices and edges. By

construction, all the probabilities of the edges can be described as a division

of two polynomials. Likewise for every edge cost, except for the default

edge (s, t) and its cost h (see Equations (3.11), and (3.9)). To show that h

can be computed efficiently observe that due to symmetry of all the true-

paths and false-paths of all the variables section, Dst, Dpt, and Pr0 can all

be computed efficiently by using simple algebraic operations. For example,

Dpt can be computed by summing the costs of traversing a path from s to

r0 through the variables section and the guards section, which is the same

for all weathers where r0 is reached. Therefore GΦ can be constructed in a

polynomial time.

Thus we have that determining whether there exists an optimal policy

starting with traversing the edge (s, t) is PSPACE-hard. As membership in

PSPACE has been shown in [31] (but see [14] for a CTP-specific algorithm),

Theorem 3.3.1 follows. 2

The following corollary is immediate from the proof of Theorem 3.3.1.

Corollary 3.3.7 The following CTP decision problem called “CTP expected

cost decision problem” is PSPACE-hard: Given an instance of the CTP, and

k > 0, does there exist an optimal policy with an expected cost of at most k.

Several corollaries follow due to the construction of GΦ: By replacing all

the edges with appropriately directed edges, we get:

Corollary 3.3.8 The CTP decision problem with directed edges and the

CTP expected cost decision problem as stated in Corollary 3.3.7 with directed

edges remain PSPACE-complete.
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3.3. Complexity of the CTP

Finally, as every unknown edge in this construction of GΦ has cost 0 and

a probability that is a power of 2 of being unblocked (the universal edges, for

example, can be split into a two-edge path), we can replace every unknown

edge with a path of zero-cost, blocking probability 1/2 edges and get:

Corollary 3.3.9 The CTP decision problem and the CTP expected cost de-

cision problem as stated in Corollary 3.3.7, remain PSPACE-complete even

if all the unknown edges have zero cost and blocking probability 1/2.
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Chapter 4

Decomposing the CTP

The intractability of the CTP, as shown in Chapter 3, calls for an analysis of

the obstacles in solving the CTP. It seems that a major obstacle lies in the

ability of the agent to traverse between several regions of the CTP graph,

without having to fully exploit any of them. See example in Figure 5.2,

Chapter 5. Thus a general ”divide and conquer” approach of the CTP seems

to be hopeless. In this chapter and in the following chapter, we explore a

variety of specific topologies and specific CTP variants, for which a ”divide

and conquer” approach can be used to yield polynomial time solutions.

We start this chapter by showing how changing the cost function, or

the blocking probability function of a CTP instance I, affects the optimal

cost for I. We then introduce a technique to partition a CTP instance into

CTP sub-instances, and show how to use these techniques for special graph

topologies.

4.1 Comparing different CTP instances

We show that the optimal cost is monotonically increasing in the cost and

blocking probability functions. This work is a generalization of previous

work by [46] in which the only changes discussed are in unblocked edges that

become blocked.

We start by showing that the optimal cost is monotonically increasing
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4. Decomposing the CTP

in the cost function. The following lemma is easily proved from Equation

(2.8), as C(π) =
∑
e∈E αew(e), where αe ≥ 0 depends on the edge’s blocking

probability.

Lemma 4.1.1 Let I = (V,E, s, t, p, w), and I ′ = (V,E, s, t, p, w′) be CTP

instances such that w′ ≤ w. Let π∗, π′∗ be optimal policies for I, I ′ respec-

tively. Then C(π′∗) ≤ C(π∗).

Proof: We show that if w′(e) < w(e) for an edge e ∈ E, and w′(e1) = w(e1)

for every e1 6= e, then C(π′∗) ≤ C(π∗).

Assume C(π∗) = αew(e) +
∑
e′ 6=e αe′w(e′). As both I and I ′ have the

same CTP graph (V,E), then the belief states of BI and BI′ have the same

variables-status representation. Therefore we can define the following bijec-

tion f : BI′ → BI . For every belief state b ∈ BI , Loc(b) = Loc(f(b)), and

b|e′ = f(b)|e′ for every e′ ∈ E. We then construct a policy π′ for I ′ such that

π′(b) = π∗(f(b)) for every b ∈ BI′ . Hence C(π′) = αew
′(e) +

∑
e′ 6=e αe′w(e′)

where αe ≥ 0. As w′(e) < w(e), we have C(π′) ≤ C(π∗), and since by defini-

tion C(π′∗) ≤ C(π′), we have C(π′∗) ≤ C(π∗).

2

Next, we show that the optimal cost is monotonically increasing in the

blocking probability. A stochastic policy is a policy χ in which the action

χ(b) is a random variable at every belief state b. It is immediate from the

Bellman equation [4] (and in particular from Equation 2.2) that for every

stochastic policy χ for a CTP instance I, there is a deterministic policy π

such that C(π) ≤ C(χ). However, stochastic policies can still be used for

proof techniques, as in the proof for the following Lemma 4.1.2. We provide

a proof outline; the full proof appears in Appendix C.

Lemma 4.1.2 Let I = (V,E, s, t, p, w), and I ′ = (V,E, s, t, p′, w) be CTP

instances such that p′ ≤ p. Let π∗, π′∗ be optimal policies for I, I ′ respectively.

Then C(π′∗) ≤ C(π∗).
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4.2. Partitions and constrained policies

Proof outline. We show that if p′(e) < p(e) for some e ∈ E, and p′(e1) =

p(e1) for every e1 6= e, then C(π′∗) ≤ C(π∗).

We say that e is revealed in a transition from a belief state b′ to a belief

state b in a policy π if b = b′oπ(b′) for some observation o, and if the status of

e is unknown in b′ and is known in b.

We then construct a stochastic policy π′1 for I ′ such that in some cases,

when e is revealed to be unblocked in a belief state reached in π1, then π′1

acts as if e is still blocked with a certain probability. Next we show that

C(π′1) = C(π∗). As π′∗ is an optimal policy for I, then C(π′∗) ≤ C(π′1), and

therefore C(π′∗) ≤ C(π∗). 2

The following theorem follows immediately from Lemma 4.1.1 and Lemma

4.1.2.

Theorem 4.1.3 The cost of an optimal policy for a CTP instance is mono-

tonically non-decreasing in the edge costs and the edge blocking probabilities.

4.2 Partitions and constrained policies

The objective in the CTP is to find a policy that minimizes the expected

cost of traveling from s to t. This objective can be generalized to find a

policy that minimizes the expected traveling cost, plus other constraints that

every policy has to meet. For example, a policy is forced to visit a certain

vertex, or to traverse a certain edge (thus practically forcing a policy to have

”landmarks”). A policy that has to meet additional constraints is called a

constrained policy , and a con1 policy for a specific constraint con1. A CTP

variant in which the objective is to find a constrained policy with a minimized

expected cost among all constrained policies (with the same constraints), is

called constrained-CTP , and con1-CTP for a specific constraint con1. Finding

an optimal (constrained) policy for constrained-CTP can yield a solution for

CTP instances in which this constrained policy happens to be optimal among

all policies.
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4. Decomposing the CTP

4.2.1 Constrained policies

We say a graph G is st-blocked in a belief state b if all the paths from a vertex

s to a vertex t in G are known to be blocked in b. We denote the probability

that G is st-blocked in b0 by PG,s,t. The st-reliability problem, finding PG,s,t,

is known to be #P-hard [41, 31]. When s, t are obvious from the context we

simply say that G is blocked, and denote PG,s,t by PG.

Throughout this section I = (V,E, s, t, p, w) is a CTP instance with a

CTP graph G = (V,E), and G′ = (V ′, E ′) is a subgraph of G with s′, t′ ∈ V ′.
The CTP instance I ′ = (V ′, E ′, s′, t′, p � E ′, w � E ′) is called a sub-instance

of I. We sometimes denote I ′ by the tuple (G′, s′, t′).

Throughout this work we assume that G′ is connected to the rest of the

graph through only s′ and t′. We also assume that the edges of Et′ ∩ (E\E ′)
are known to be unblocked. For example, Figure 4.1 depicts a CTP instance

M , with a sub-instance M ′ over a sub-graph G′. The only two unknown

edges in M are (u1, t
′) and (u3, t

′).

Note that unlike the CTP instance I, there is no guarantee that the CTP

sub-instance I ′ of I has an always unblocked path from s′ to t′. However,

if G′ is found s′t′-blocked in a belief state b, then the agent must retrace

to s′ and ”‘departure”’ G′ through s′ (see below for the exact definition of

departure a sub-graph).

Therefore we virtually add, for computational purposes alone, an always

unblocked edge e = (s′, t′) with a very high cost w(e). For every optimal

policy, e is traversed if and only if all the paths in G′ from s′ to t′ are found

blocked. As e is traversed with probability PG′ , we subtract PG′w(e) when

computing the expected cost of a policy for I ′. See Figure 4.2 for the CTP

sub-instance M ′ obtained from G′ and M .

Recall that L is a function that assigns a belief state to every node in Tπ,

and assigns an action/observation to every arc in Tπ (see Section 2.3.4). The

following concepts are defined to be able to reason about properties of the

policy π (by an ”external” observation, rather than by the agent himself).

An action move(e) is said to be inside G′ if e ∈ E ′, and outside G′ if e 6∈ E ′.
For an OR-node z ∈ Tπ, which is not the root in Tπ, and z′′, the grandparent
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s

s′

t

t′

v1

v2

u1 u2

u3

w1|p1

w2|p2

G′

Figure 4.1: A CTP instance M , with a sub-graph G′, circled in grey.

s′

t′

u1 u2

u3

w1|p1

w2|p2

Figure 4.2: The CTP instance M ′. Note that M ′ = (G′, s′, t′) is a sub-
instance of M from Figure 4.1. The edge (s′, t′) is virtually added to define
the optimal cost of M ′.
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4. Decomposing the CTP

of z, we define PrevActionπ(z) to be π(L(z′′)). NextActionπ(z) is defined

to be π(L(z)). If z is an AND-node in Tπ, and z′ is the parent of z, then

PrevActionπ(z) = π(L(z′)). If z has only a single child z′ in Tπ ( as a result

of only a single observation received at L(z)), we define NextActionπ(z) to

be π(L(z′)).

We say that an OR-node z ∈ Tπ, where L(z) = b, is an entry point (in

Tπ) of G′, if π(b) is inside G′, and either b = b0, or PrevActionπ(z) is outside

G′. We say that z is the first entry point (in π) of G′, if z is an entry point

of G′, and there is no ancestor of z in Tπ that is an entry point of G′. If

Loc(b) = v we say that z is the first entry point of G′ (in Tπ) through v.

We define Zin(G′, π) to be the set of OR-nodes in Tπ that are the first entry

points of G′ through s′. Let Bin(G′, π) = {L(z) | z ∈ Zin(G′, π)}.
For example, Figure 4.3 depicts a policy tree, for a policy π for M from

Figure 4.1. The OR-node z is the first entry point of G′ in π through s′.

Therefore L(z) ∈ Bin(G′, π).

We say an AND-node z, with L(z) = b, is a departure point of G′ (in

Tπ) , if PrevActionπ(b) is inside G′, a single observation is received at b, and

NextActionπ(b) is outside G′. z is the first departure point (in π) of G′, if

z is a departure point of G′ and there is no ancestor of z in Tπ that is a

departure point. If Loc(b) = v we say that z is the first departure point of

G′ (in Tπ) through v.

We define Zsucc(G′, π) to be the set of AND-nodes that are a first de-

parture point through t′. We define Zfail(G′, π) to be the set of AND-nodes

that are a first departure point through s′, and such that G is s′t′-blocked in

L(z) for every z ∈ Zfail(G′, π). Let Zout(G′, π) = Zsucc(G′, π) ∪ Zfail(G′, π).

Let Bsucc(G′, π) = {L(z) | z ∈ Zsucc(G′, π)}, and Bfail(G′, π) = {L(z) | z ∈
Zfail(G′, π)}. Let Bout(G′, π) = Bsucc(G′, π) ∪Bfail(G′, π) .

For example, the AND-nodes z1, z2 in Figure 4.3, are the first departure

points of G′ through t′, and therefore L(z1), L(z2) ∈ Bsucc(G′, π). The AND-

node z3 is the first departure point of G′ through s′ and G′ is s′t′-blocked in

L(z3); therefore L(z3) ∈ Bfail(G′, π). Bout(G′, π) = {L(z1), L(z2), L(z3)}.
Claim 2.4.2 ensures that every belief state in Tπ cannot be reached in π

from two separate belief states; therefore Bin(G′, π), and Bout(G′, π) are well
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b0r

move(u1, t
′)

move(u3, t
′)

move(t′, t)

move(s′, u1)

move(u1, s
′, u2, u3)

move(u3, u2, s
′)

move(s′, s, v1, t)move(t′, t)

z

(u1, t
′) = blocked(u1, t

′) = unblocked

(u3, t
′) = blocked(u3, t

′) = unblocked
z1

z2 z3

move(s.s′)

Figure 4.3: A policy π for M . The square nodes are OR-nodes, the round
nodes are AND-nodes.

defined.

Recall that B(b, π) is the set of belief states reachable in π from b. For

b ∈ Bin(G′, π), let Bout
b (G′, π) = Bout(G′, π) ∩ B(b, π) be the belief states

in Bout(G′, π) that are reachable from b in π. As the edges of Et′ ∩ (E\E ′)
are known to be unblocked, we have that if b ∈ Bin(G′, π), and b1, b2 ∈
Bout
b (G′, π), then b1|e = b2|e for every e ∈ E\E ′ .

We now define a committing policy. Informally π is I ′-committing if once

G′ is first entered through s′, the agent either departs G′ through t′ or finds

G′ to be s′t′-blocked, and then departs through s′. In both cases, once G′ is

departed, no edge of G′ is traversed again. The formal definition is as follows.
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4. Decomposing the CTP

Definition 4.2.1 A policy π is I ′-committing (or (G′, s′, t′)-committing) if

the only entry points of G′ in Tπ are of Zin(G′, π), and the only departure

points z of G′ in Tπ are of Zout(G′, π).

When s′, t′ are obvious from the context we say π is G′-committing. The

policy π depicted in Figure 4.3 is an M ′-committing policy.

In Section 4.2.2 we see that by dividing a CTP instance I into specific sub-

instances, and considering policies that are sub-graph committing, we can use

a ”‘divide and conquer”’ approach on the sub-instances of I. Thus on specific

CTP instances, finding the optimal solution for every sub-instance yields an

optimal solution for the general instance. For example, in a disjoint path

topology (see Section 2.5), in which every two paths from s to t are vertex-

disjoint, an optimal policy is a constrained policy that is (Ij, s, t)-committing

for every path Ij.

Next, we establish a relation between I ′-committing policies for I, and

policies for I ′. Let π be a policy for I, a belief state b ∈ BI , and a collec-

tion of belief states B ⊆ B(b, π). We define trunc(πb, B) to be the partial

policy truncated from πb by removing the actions in every b′ ∈ B. That is,

Ttrunc(πb,B) is obtained from Tπb by removing every out-going arc from every

vertex v with L(v) ∈ B. For example, the tree in the dashed square, from

Figure 4.3, is Ttrunc(πb,B) for b = L(z), and B = {L(z1), L(z2), L(z3)}. Note

as every such vertex v, with L(v) ∈ B, becomes a leaf in Ttrunc(πb,B), then

C(trunc(πb, B)), the cost of πb,B, can be computed as in Equation 2.8.

We say a belief state b is between B1 and B2 if there is a belief state

b1 ∈ B1, such that b is reachable from b1, and there is a maximal cut S

in Tπb such that L(z) ∈ B2 for every z ∈ S. Informally, let π be an I ′-

committing policy for I. We say π simulates a policy π′ for I ′ if for every

belief state between Bin(G′, π) and Bout(G′, π), there is a corresponding belief

state b′ ∈ BI′ with the same variables-status representation over the edges

of E ′, such that π(b) = π′(b′). The policy π′ is called the contraction of

π to I ′, and C(trunc(πb, B
out
b (G′, π))) = C(π′) 1. The formal definitions

of policy simulation and contraction of a policy are delicate, and therefore

1We ignore the default edge of (s′, t′), see Appendix D.1 for details.
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appear in Appendix D.1. For example, the policy π′ for M ′ on Figure 4.4 is

a contraction of the policy π (see Figure 4.3) to M ′ (see Figure 4.2).

move(u1, t
′)

move(u3, t
′)

move(s′, u1)

move(u1, s
′, u2, u3)

move(u3, u2, s
′)

(u1, t
′) = blocked(u1, t

′) = unblocked

(u3, t
′) = blocked(u3, t

′) = unblocked

move(s′, t′)

b′0

Figure 4.4: A policy π′ for M ′, which is a contraction of π to M ′.

Now suppose that π is an optimal I ′-committing policy; that is, π is op-

timal among all I ′-committing policies for I. One may ask if the contraction

of π to I ′ is an optimal policy for I ′. Indeed the answer is positive, as shown

in the following lemma.

Lemma 4.2.2 For every optimal I ′-committing policy π for I, the contrac-

tion of π to I ′ is an optimal policy for I ′.

Proof: Let π be an optimal I ′-committing policy for I, and let b ∈ Bin(G′, π).

By an argument identical to Claim 2.3.1, we can assume that πb is an optimal

I ′-committing policy for Ib. Let π′ be the contraction of πb to I ′. Assume

in contradiction that π′ is not optimal. Then there is a policy χ′ for I ′ such

that C(χ′) < C(π′). Let χb be a policy for Ib that simulates χ′.

First note that for every b1 ∈ Bfail
b (G′, πb), and d1 ∈ Bfail

b (G′, χb), we

have Loc(b1) = Loc(d1), and b1|e = d1|e for every e ∈ E\E ′. This due to
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the fact that the edges of Et ∩ (E\E ′) are known to be unblocked. Let E ′-

exclusive be the following constraint ”the edges of E ′ cannot be traversed”.

As πb is an optimal I ′-committing policy, then πb1 is an E ′-exclusive policy.

Again, by the same argument as in Claim 2.3.1, πb1 can be assumed to be

optimal among all E ′-exclusive policies for Ib1 .

Therefore, there is an E ′-exclusive policy νd1 for Id1 , such that C(πb1) =

C(νd1) (see Lemma D.2.1 in Appendix D for details). Following the same

argument, for every b2 ∈ Bsucc
b (G′, πb), and d2 ∈ Bsucc

b (G′, χb), there is an

E ′-exclusive policy νd2 for Id2 , such that C(πb2) = C(νd2).

Now construct a policy νb for Ib, from the policy χb, as follows. For every

AND-node z ∈ Tχb where L(z) = d1, and d1 ∈ Bfail
b (G′, χb), extract Tχb(z),

and attach Tνd1 (z) instead. Likewise, for every AND-node z ∈ Tχb where

L(z) = d2, and d2 ∈ Bsucc
b (G′, χb), extract Tχb(z), and attach Tνd2 (z) instead.

Then νb is I ′-committing, and we have

C(νb) = C(χ′) + PG′C(πb1) + (1− PG′)C(πb2)

Note that

C(πb) = C(π′) + PG′C(πb1) + (1− PG′)C(πb2)

Therefore, as C(χ′) < C(π′), we have that C(νb) < C(πb), contradicting

the optimality of πb as an optimal I ′-committing policy for Ib.

2

4.2.2 Decomposing CTP instances

Let I = (G, s, t, p, w) be a CTP instance with I ′ = (G′, s′, t), a sub-instance

of I where G′ = (V ′, E ′). Note that the goal vertex of I and I ′ is the same.

Let π∗ be an optimal I ′-committing policy for I, and let π′∗ be an optimal

policy for I ′. By Lemma 4.2.2 we can assume that π′∗ is the contraction of

π∗ to I ′. Therefore, if b ∈ Bin(G′, π∗), then trunc(π∗b , B
out
b (G, π∗)) can be

considered as a single macro-action, denoted by TRY (I ′), and we say that

I ′ is tried in π∗. When I ′ is obvious from the context, we denote TRY (I ′)
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4.2. Partitions and constrained policies

by TRY (G′) , and say that G′ is tried in π∗.

The results of TRY (I ′) are either that the agent is at t, or that the agent is

at s′ and G′ is found to be s′t-blocked. Note that E[TRY (I ′)] = C(π′∗). Let

QG′ = 1−PG′ be the probability that G′ is not blocked. Let DG′ = E[TRY (G′)]
QG′

(for now we assume that PG′ < 1, see remark 4.2.4 below). When G′ is

obvious from the context we sometimes denote E[TRY (G′)] by C(G′). The

parameter DG′ , called the factored cost of G′, is a property of the subgraph

(G′, s′, t) and is used for comparisons between different subgraphs. Note

that these definitions are a generalization of the TRY (i) and Di obtained in

disjoint path graphs (see Section 2.5).

Let I1 = (G1, s
′, t) and I2 = (G2, s

′, t) be sub-instances of a CTP instance

I = (G, s, t, p, w) such that G1 = (V1, E1) and G2 = (V2, E2). Assume that

V1 ∩ V2 = {s′, t}. Then by traversing G1 no edges of G2 are revealed, and by

traversing G2 no edges of G1 are revealed. Let π be a policy for I that is both

G1-committing and G2-committing. Then TRY (G1) is performed in every

belief state in Bin(G1, π), and TRY (G2) is performed in every belief state

in Bin(G2, π). We say that G2 succeeds G1 in π if Bfail(G1, π) = Bin(G2, π)
2. An alternative policy for I can be a policy π′, obtained from π, in which

G1 succeeds G2. We then say π′ is obtained from π by switching G1 and

G2. Note that this switching is possible as the entry and departure points

of G1 and G2 are the same. We denote the constraint: ” π is (G1, G2)-

committing and G2 is successor to G1” by G2-succ-G1, and the constraint:

”π is (G1, G2)-committing and G1 is successor to G2” by G1-succ-G2.

Lemma 4.2.3 Let π be a G2-succ-G1 optimal policy for I, and let π′ be a

G1-succ-G2 optimal policy for I, such that π′ is obtained from π by switching

G1 and G2. Then C(π) < C(π′) iff DG1 < DG2.

Proof: As π′ is obtained from π by switching G1 and G2, we have that

Bin(G1, π) = Bin(G2, π
′). Let b ∈ Bin(G1, π), and let v ∈ Tπ, and v′ ∈ Tπ′ be

such that L(v) = L(v′) = b. We show that V π(v) < V π′(v′) iff DG1 < DG2 .

Then proof follows by backward induction as in Claim 2.3.1.

2We can make this comparison as only a single observation is received in every belief
state in Bfail(G1, π).
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4. Decomposing the CTP

Note that for every b1 ∈ Bfail
b (G2, π) and b2 ∈ Bfail

b (G1, π
′), we have

Loc(b1) = Loc(b2), and b1|e = b2|e for every e ∈ E\(E1 ∪ E2). Let (E1, E2)-

exclusive be the following constraint: ”the edges of E1 ∪ E2 cannot be tra-

versed”. As π is G2-succ-G1 optimal, and as π′ is G1-succ-G2 optimal,

we have that πb1 is (E1, E2)-exclusive optimal for Ib1 , and π′b2 is (E1, E2)-

exclusive optimal for Ib2 . Now from Lemma D.2.1 in Appendix D, we have

that C(πb1) = C(πb2). Denote C(πb1) by W . Then

V π(v) = C(G1) + PG1(C(G2) + PG2W ) (4.1)

and

V π′(v′) = C(G2) + PG2(C(G1) + PG1W ) (4.2)

which implies

V π(v) < V π′(v′) iff DG1 < DG2

as required.

2

Remark 4.2.4 Note that if w.l.o.g. PG2 = 1 then it follows straight from

Equations 4.1 and 4.2 that V π(v′) ≤ V π′(v). Therefore when comparing a

policy with a switched policy, we assume throughout this work that PG < 1

for every graph G.

We now generalize the concept of ”switching policies”, and define a par-

tition of a CTP instances to several sub-instances.

Definition 4.2.5 A CTP instance I = (V,E, s, t, p, w) (where G = (V,E))

is a partition of CTP-instances ((G1, s
′, t), · · · (Gk, s

′, t)) of M , where Gi =

(Vi, Ei) if:

• ⋃
i<k Vi = V and

⋃
i≤k Ei = E.

• Vi ∩ Vj = {s′, t}

I is called a {G1, · · · , Gk}-CTP partition .
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4.2. Partitions and constrained policies

Let π be an optimal policy for a {G1, · · · , Gk}-CTP partition I, and as-

sume that π is Gi-committing for every i ≤ k. By Lemma 4.2.2, we may

assume that every contraction of π to Gi is an optimal policy for Gi. There-

fore, as every edge in E belongs to some Ei, the policy π can be described

as a permutation of TRY (Gi) macro actions over {1 · · · k} as follows. At

step i, unless t is reached, perform TRY (Gi). Assuming w.l.o.g that the

permutation order in π is {1, · · · k}, we have that the cost of C(π) is

C(π) =
∑
i<k

(
∏
l<i

PGi)C(πGi) (4.3)

Then the following corollary is immediate from Lemma 4.2.3.

Corollary 4.2.6 The optimal order of π is a non-decreasing order of the

factored costs of the Gi.

Using Corollary 4.2.6 we present a divide and conquer framework called

the partition framework for finding optimal policies for a CTP instance I:

• Find a partition of I to CTP sub-instances {Gi | i ≤ k} for some k.

• Find DGi for every i ≤ k.

• Show that a {Gi | i < k}-committing policy for I is optimal among all

policies for M .

The difficulty of course is to find the ”right” partition, assuming there is

one, as every step in this framework can be intractable. To find DGi , one

has to find the optimal cost for Gi, which is a PSPACE-complete problem

(see Chapter 3). Finding QGi is a #P-complete problem [41]. Also note that

finding the optimal cost, is different from finding the actual optimal policy

(or the first move in such policy): sometimes one is easy to solve while the

other is hard. However, we suspect that by using this framework we can

find policies with a better approximation to the optimal cost. For example,

we can decompose a CTP instance into several sub-instances, where in each

sub-instance a different heuristic is implemented in order to approximate
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4. Decomposing the CTP

DGi , and thus provide a more accurate solution. In Chapter 5 we give an

example of where this framework can be implemented and yield an optimal

solution for various CTP instances. Note that it is generally not true that

every optimal policy can be subgraph-partitioned, as the observations that

the agent receives during traversal in a certain subgraph can affect the agent’s

decision making after a subgraph is departed.

Remark 4.2.7 Recall that a vertex v ∈ V is explored in a belief state b if

the status of all its incident edges is known in b. Let U(G) ⊆ V be the set

of all vertices in V that are explored in b0. By re-defining commitment of

policy, Corollary 4.2.6 still holds for subgraphs with mutual vertices in U(G).

Therefore we can generalize the partition framework to such subgraphs. See

Appendix D.3 for the exact details.
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Chapter 5

The CTP on Trees

CTP-Tree, defined below, is a CTP in which all the vertices in the CTP

graph, apart from t, form a tree with s being the root. CTP-Tree is a gen-

eralization of CTP-DISJ (Section 2.5). As CTP-DISJ has a polynomial time

solution, while CTP on a general graph is PSPACE-complete, the analysis of

CTP-Tree is a natural research direction. We can only conjecture that CTP-

Tree is intractable. However, as the st-reliability problem has a polynomial

time solution on trees (well known, but see Lemma E.0.3 in Appendix E

for the proof), we provide by using the partition framework (Section 4.2.2),

several special variants for CTP-Tree for which there is a polynomial time

solution.

A free edge is a zero cost edge known to be unblocked. CTP-Tree is a

CTP instance T = (V,E, s, t, p, w) such that the graph (V \{t}, E\Et) is a

tree with a root s. The edges of Et are free edges, called terminal free edges ,

which connect t with every leaf in (V \{t}, E\Et); see Figure 5.1.

As the objective in CTP is to find a strategy that minimizes the expected

travel cost from s to t, we may assume that once a leaf l in (V \{t}, E\Et)
is reached, the edge (l, t) is traversed. Therefore throughout this work we

consider a CTP-Tree T as if it were a tree with a root s. The objective is

then to find a policy that minimizes the expected travel cost from s to a leaf

l in V 1.

1We can assume that the default edge is an edge (s, t′) in which (t′, t) is a terminal free
edge.
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5. The CTP on Trees

s

t

Figure 5.1: CTP Trees. Dashed edges are terminal free edges.

The problem of whether CTP-Tree admits a polynomial time solution is

still open. The main difficulty lies in the fact that an optimal policy for

a subtree does not necessarily yield an optimal policy for the entire tree.

Therefore, unlike many solutions to problems with a tree layout, a dynamic

programming method seems unlikely to work; see Figure 5.2 and Figure 5.3

for examples. In what follows we provide several approaches and variants for

which a polynomial time solution can be found. For clarification, the policy

tree of a policy π is denoted by Tπ throughout this chapter.

s

t

v1 v2

v3 v4 v5

10|0 10|0

1000|0
100|0.5

1|0.5

Figure 5.2: CTP Trees. The optimal policy (with a cost of 300.5) is to
traverse (s, v1); if (v1, v4) is blocked, traverse (s, v1) and (s, v2) to v2. If
(v2, v5) is blocked, retrace to v1 and reach t through (v1, v3).
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5.1. Trees with no exploration vertices

s

t

v1 v2

v3 v4 v5

10|0

1000|0
100|0.5

1|0.5

1|0

Figure 5.3: CTP Trees. The optimal policy (with a cost of 290.5) is to
traverse (s, v2). Then, regardless of whether (v2, v5) is blocked or unblocked,
traverse (s, v2) and (s, v1) to v1. If (v1, v4) is blocked, and (v2, v5) was found
unblocked, retrace to v2 and reach t through (v2, v5). (v1, v4) is unblocked
then reach t through v4

.

5.1 Trees with no exploration vertices

Recall that T (v) is the subtree of a tree T with a root v ∈ T . T Par(v), for

v 6= s, is the subtree gained from T (v) with Parent(v) as an additional vertex,

and (Parent(v), v) as an additional edge; see Figure 5.4. The probability that

a subtree T with a root v is vt-blocked is denoted by PT . For a constrained

CTP-Tree T , a vertex v 6= s is called a committing-vertex , if the only policies

that are considered as a solution are those that are (T Par(v), v, t)-committing

(then the objective is to find an optimal (T Par(v), v, t)-committing policy).

If v is a committing vertex, and the agent traverses the edge (Parent(v), v),

then the agent retraces to Parent(v) if and only if T (v) is found to be vt-

blocked. Thus using methods acquired from Section 4.2, an optimal solution

for T Par(v) can be used to find an optimal solution for CTP with a com-

mitting vertex v. A vertex v 6= s in T that is not committing is called an

exploration vertex . A CTP-Tree T is called k-Exp-CTP-Tree, if there are at
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5. The CTP on Trees

most k exploration vertices in T . 0-Exp-CTP-Tree is a CTP-Tree in which

all the vertices, apart from s, are committing.

Theorem 5.1.1 0-Exp-CTP-Tree admits a polynomial time solution.

v
T (v)

T par(v)
Parent(v)

Figure 5.4: CTP Trees. T Par(v) has an additional vertex Parent(v), and an
edge (Parent(v), v).

To prove Theorem 5.1.1, we present a recursive polynomial time algo-

rithm, based on ”sorted DFS”, called NoExpTreeSolver (see Algorithm 1),

which provides a polynomial time solution for 0-Exp-CTP-Trees.

Given a vertex v ∈ V of a 0-Exp-CTP-Tree T , NoExpTreeSolver(v)

returns the optimal cost for T (v), denoted by C(T (v)), and the first action

in a policy that achieves this optimum. Therefore NoExpTreeSolver(s)

returns the optimal cost for T and a first action in an optimal policy for T .

For v ∈ T , recall that v and all the children of v are committing. There-

fore by using the partition framework described in Section 4.2.2, an optimal

policy for T (v) can be represented as a permutation over the macro-actions

TRY (T Par(vi)) for the children vi of v. The value C ′(u), where u is a child

of v, is E[TRY (T Par(u))], which is computed to be:

E[TRY (T Par(u))] = (1− p((v, u)))
�
w((v, u)) + C(T (u)) + PT (u)w((v, u))

�

As T (u) is a tree, PT (u) can be recursively found in polynomial time,

see Lemma E.0.3 in Appendix E. Note that BestCost in Algorithm 1, is

computed as in Equation 4.3 . Therefore the correctness and optimality of
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5.2. Polynomial time solution for 1-Exp-CTP-Tree

NoExpTreeSolver is immediate from Corollary 4.2.6; BestCost is indeed

the optimal cost for T (v), and BestAction is a first move in a policy that

achieves this optimum.

Algorithm 1: NoExpTreeSolver(v)

BestAction = NULL, BestCost = INF;
if v = t then

return (NULL, 0) /*target reached, cost 0, no action*/

Nv ← the children of v;
foreach vertex u ∈ Nv do

C ′(u)← (1− p((v, u)))
�
(1 + PT (u))w((v, u)) +

NoExpTreeSolver(u).BestCost
�
;

D′(u)← C′(u)
1−P

TPar(u)
;

sort Nv to an array {z1, · · · , zl} in a non-decreasing order of D′(zi);
BestCost← ∑

i<l
∏
x<i PTPar(zx)D

′(zi);
BestAction← move(v, z1);
return (BestCost, BestAction)

Note that for every vertex in T , NoExpTreeSolver is recursively called

exactly once. As the calculation of PTPar(u) for every vertex u can be done

in O(n), and as the children of every vertex v are sorted, we have that

NoExpTreeSolver admits a run time of O(n2log(n)) 2.

5.2 Polynomial time solution for 1-Exp-CTP-

Tree

We next discuss 1-Exp-CTP-Trees, which contain only a single designated

exploration vertex. We provide a polynomial time solution for instances of 1-

Exp-CTP-Tree in which the adjacent edges of the (single) exploration vertex

are unblocked. This result can be easily extended for instances of 1-Exp-

CTP-Tree in which only the outgoing edges of the exploration vertex are

unblocked.

2In fact, the run time can be reduced to O(nlogn) with a more careful calculation.
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5. The CTP on Trees

Let T = (V,E, s, t, p, w) be a 1-Exp-CTP-Tree instance, and let v1 ∈ V
be the exploration vertex in V . Assume that the outgoing edges of v are all

unblocked. As v1 6= s then v1 has a parent Parent(v1), which is denoted in

this section by v0 (see Figure 5.5). Next, note that as every descendant u of

v1 (where u 6= v1) is a committing vertex, the optimal cost of T Par(u) can

be found in polynomial time by using NoExpTreeSolver (see Section 5.1 for

details). Likewise, if u is a descendant of a sibling of v1, then T Par(u) can be

found in polynomial time by using NoExpTreeSolver as well. Thus, if u is

a child of v1 or a sibling of v1, and the agent is located in u, then Parent(u)

is retraced if and only if T (u) is found blocked. We say that a child u of

v0 or v1 is chosen by the agent, if the next action performed by the agent

is TRY (T Par(u)). Table 5.1 shows the possible actions in every reasonable

policy π when the agent is located anywhere in T (v0).

v0

v1

v11 v1j

v01 v0i

v1l1

v0l0

Figure 5.5: 1-Exp-CTP-Tree. v0 is the parent of v1. The children of v1 are
denoted by {v1

1 · · · v1
l1
}. The siblings of v1 are denoted by {v0

1 · · · v0
l0
}.

As crossing (v0, v1) back and forth is clearly not optimal, it remains to
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5.2. Polynomial time solution for 1-Exp-CTP-Tree

Table 5.1: Reasonable policy actions in π
Location Action
v0 cross (v0, v1) or choose the next child of v0, see Rule 5.2.1
v1 cross (v0, v1) or choose the next child of v1 , see Rule 5.2.2
u: a child of v1, perform TRY (T (u)); if blocked, retrace to v1

u: a sibling of v1, perform TRY (T (u)) ; if blocked, retrace to v0

v0 and T (v0) is blocked cross (Parent(v0), v0)

see how the next sibling of v1 is chosen at v0, in case (v0, v1) is not crossed,

and how the next child of v1 is chosen at v1, in case (v0, v1) is not crossed.

Let π be an optimal policy for T , and let z0 ∈ Tπ be a node in which

(T (v0), v0, t) is first entered. Let L(z0) = b0. As every reasonable policy must

meet the restriction in Table 5.1, we may assume that the CTP sub-instance

of T with the initial state b0, can be described as a {G0
i |i ≤ k0}-partition,

for k0 > 0, as follows. For every i < k0, either G0
i = T Par(u), where u is

a sibling of v1, or G0
i is a subgraph of T par(v1) (which fully contains one or

more subtrees of children of v1). The last subgraph in the partition, G0
k0

, is

distinct from T (v0) and is entered through (Parent(v0), v0) when T (v0) is

found blocked. In this case, v0 is not retraced again; therefore t is reached

in G0
k0

.

Denote the set of vertices of graph G0
i , for i ≤ k0, by V G0

i . Then, as the

outgoing edges of v1 are unblocked, the vertices of V G0
i ∩ V G0

j (apart from

v0) are exposed vertices. 3, Therefore, following the partition framework in

Section 4.2.2, and Remark 4.2.7, for subgraphs with mutual exposed vertices,

πb0 can be described as a permutation of macro actions TRY (G0
i ) of i < k0.

Then by Corollary 4.2.6, we have the following rule.

Rule 5.2.1 Let u1, u2 be siblings of v1. Then at v0, if T (v0) is not blocked,

it is optimal to choose u1 before u2 if and only if T Par(u1) is unblocked, and

D(T Par(u1)) ≤ D(T Par(u2)).

Rule 5.2.1 states the next sibling of v1 that is to be chosen in every

reasonable policy when the location of the agent is v0 (in case (v0, v1) is not

3The edge (v0, v1) can be assumed to be unblocked as well, as otherwise the entire
problem becomes trivial.
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traversed of course).

We assume w.l.o.g. that the G0
i are ordered such that if u1, u2 are siblings

of v1, G0
i = T Par(u1), G0

j = T Par(u1), and D(T Par(u1)) ≤ D(T Par(u2)), then

i < j.

We now repeat the same argument, but for v1, with z1 ∈ Tπ being a

node in which (T (v1), v1, t) is first entered . Let L(z1) = b1. As before,

we may assume that the CTP sub-instance of T with the initial state b1 is

a {G1
i |i ≤ k1}-partition as follows. For every i < k1, either G1

i = T Par(u),

where u is a child of v1, orG1
i is a subgraph of T par(v0), which contains (v0, v1)

and is distinct from T (v1) (G1
i fully contains several subtrees of siblings of

v1). Again, the last subgraph, G1
k1

, is distinct from T (v1), and is entered

when T (v1) is found blocked. Following the partition framework, we have

that πb1 is also a permutation of macro actions TRY (G1
i ) of i < k1, and by

Corollary 4.2.6 and Remark 4.2.7, we have the following rule:

Rule 5.2.2 Let u1, u2 be children of v1. Then at v1, if T (v1) is not blocked,

it is optimal to choose u1 before u2 if and only if T Par(u1) is unblocked, and

D(T Par(u1)) ≤ D(T Par(u2)).

Rule 5.2.2 states the next child of v1 that is to be chosen in every reason-

able policy when the location of the agent is v1 (again, in case (v0, v1) is not

traversed).

We again assume w.l.o.g. that the G1
i are ordered such that if u1, u2

are children of v1, G1
i = T Par(u1), G1

j = T Par(u1), and D(T Par(u1)) ≤
D(T Par(u2)), then i < j.

Using Table 5.1, and Rules 5.2.1 and 5.2.2, we provide a dynamic pro-

gramming algorithm that runs in polynomial time, and computes the op-

timal cost of T (v0) and the first move in a policy that achieves this opti-

mum. Denote the siblings of v0 by {v0
1, · · · , v0

l0
} such that D(T Par(v0

i )) ≤
D(T Par(v0

i+1)), and the children of v1 by {v1
1, · · · , v1

l1
} such thatD(T Par(v1

i )) ≤
D(T Par(v1

i+1)).

For k ∈ {0, 1}, note that as every vertex in T (vki ) is committing, then

D(T Par(vki )) can be found in polynomial time by using NoExpTreeSolver
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5.2. Polynomial time solution for 1-Exp-CTP-Tree

to calculate C(T Par(vki )) (finding PTPar(vki ) is easy; see Lemma E.0.3 in Ap-

pendix E).

Next, we construct a dynamic programming table H of size 2 × (l0 +

1) × (l1 + 1). The cell H(0, i, j) holds the optimal cost for (T Par(v0), v0, t)

at every belief state b in which (v0, v1) is unblocked, Loc(b) = v0, the

only not known to be blocked subtrees of v0 (apart from T Par(v1)) are

those of {T Par(v0
i ) · · ·T Par(v0

l0
)}, and the only not known to be blocked

subtrees of v1 are those of {T Par(v1
j ), · · ·T Par(v1

l1
)}. An additional variable

BestAction(0, i, j) holds the first action in an optimal policy for Ib.

The cell H(1, i, j) holds the optimal cost for (T Par(v0), v0, t) at every belief

state b in which (v0, v1) is unblocked, Loc(b) = v1, the only not known to be

blocked subtrees of v0 (apart from T Par(v1)) are those of {T Par(v0
i ) · · ·T Par(v0

l0
)}

and the only not known to be blocked subtrees of v1 are those of {T Par(v1
j ), · · ·T Par(v1

l1
)}.

BestAction(1, i, j) holds the first action in an optimal policy for Ib. For

i = l0 + 1, the cells H(0, i, j) and H(1, i, j) hold the optimal cost when all

the subtrees of v0, apart from T (v1), are known to be blocked. Likewise, for

j = l1 + 1, the cells H(0, i, j) and H(1, i, j) hold the optimal cost when all

the subtrees of v1 are known to be blocked. See example in Figure 5.6.

Then H is computed as follows.

• For every k ∈ {0, 1} and j ≤ l1 + 1, H(k, l0 + 1, j) is computed using

NoExpTreeSolver.

• For every k ∈ {0, 1} and i ≤ l0 + 1, H(k, i, l1 + 1) is computed using

NoExpTreeSolver.

• For k = 0, i ≤ l0 and j ≤ l1 we have

H(0, i, j) = min
§
C(T Par(v0

i )) + PTPar(v0i )H(0, i+ 1, j),

w((v0, v1)) + C(T Par(v1
j )) + PTPar(v1j )H(1, i, j + 1)

ª
(5.1)
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v0

v1

v11

v01

v1l1

v0l0v02

v12

Figure 5.6: 1-Exp-CTP-Tree, in a belief state b where T Par(v1
1) is known to

be blocked. Assume Loc(b) = v0. Then the optimal cost for (T Par(v0), v0, t)
at b is computed in H(0, 1, 2).

• For k = 1, i ≤ l0 and j ≤ l1 we have

H(1, i, j) = min
§
C(T Par(v1

j )) + PTPar(v1j )H(1, i, j + 1),

w((v0, v1)) + C(T Par(v0
i )) + PTPar(v0i )H(0, i+ 1, j)

ª
(5.2)

Lemma 5.2.3 H(0, 1, 1) is the optimal cost for T (v0).

Proof. By backward induction on i, j.

• When T Par(v0
1) · · ·T Par(v0

l0
) are all blocked, the vertex v1 is de facto

a committing vertex. Therefore, for every k ∈ {0, 1} and j ≤ l1 + 1,

H(k, l0 + 1, j) is computed using NoExpTreeSolver.
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5.2. Polynomial time solution for 1-Exp-CTP-Tree

• When T Par(v1
1) · · ·T Par(v1

l1
) are all blocked then T (v1) is blocked. There-

fore, for every k ∈ {0, 1}, and i ≤ l0 + 1, H(k, i, l1 + 1) is computed

using NoExpTreeSolver as well.

Assume that H(k, i, j + 1) and H(k, i+ 1, j) hold the optimal cost.

• In order to compute H(0, i, j) for i ≤ m and j ≤ l, there are two

reasonable policies that can be considered. BestAction(0, i, j) is the

first action in a policy that achieves this optimum:

1) Perform TRY (T Par(v
0
i )). With probability PTPar(v0i ), the tree T Par(v0

i )

is found blocked, a belief state b with Loc(b) = v0 is reached, in which

by the induction assumption the optimal cost is H(0, i+ 1, j). This is

for a total cost of

C(T Par(v0
i )) + PTPar(v0i )H(0, i+ 1, j)

2) Cross (v0, v1), and then perform TRY (T Par(v1
j )). Then with prob-

ability PTPar(v1j ), the subtree T Par(v1
j ) is blocked, a belief state b, with

Loc(b) = v1 is reached, in which by the induction assumption the op-

timal cost is H(1, i, j + 1). This is for a total cost of

w((v0, v1)) + C(T Par(v1
j )) + PTPar(v1j )H(1, i, j + 1)

• Similarly, in order to compute H(1, i, j) for i ≤ l0 and j ≤ l1, there are

two reasonable policies that can be considered, and the policy with the

minimum cost is computed in H(1, i, j). BestAction(1, i, j) is the first

action in a policy that achieves this optimum.

1) Perform TRY (T Par(v1
j )). With probability PTPar(v1j ), the subtree

T Par(v1
j ) is found blocked, a belief state b, with Loc(b) = v1 is reached,

in which by the induction assumption the optimal cost is H(1, i, j+ 1).

This is for a total cost of

C(T Par(v1
j )) + PTPar(v11)H(1, i, j + 1)
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5. The CTP on Trees

2) Cross (v0, v1), and perform TRY (T Par(v0
i )). With probability PTPar(v0i ),

the subtree T Par(v0
i ) is blocked, a belief state b, with Loc(b) = v0

is reached, in which by the induction assumption the optimal cost is

H(0, i+ 1, j). This is for a total cost of

w((v0, v1)) + C(T Par(v0
i )) + PTPar(v0i )H(0, i+ 1, j)

2

We can now prove the following theorem.

Theorem 5.2.4 1-Exp-CTP-Tree admits a polynomial time solution when

the edges adjacent to the exploration vertex are known to be unblocked.

Algorithm 2: OneExpTreeSolver(v)

BestAction = NULL, BestCost = INF;
if v = t then

return (NULL, 0) /*target reached, cost 0, no action*/

if v is a parent of an exploration vertex then

BestCost← H(0,1,1)
1−P

TPar(v)
;

BestAction← BestAction(0, 1, 1);
return (BestCost, BestAction)

else
Nv ← the children of v;
foreach vertex u ∈ Nv do

C ′(u)←
(1− p((v, u)))

�
(1 + PT (u))w((v, u)) +OneExpTreeSolver(u)

�
;

D′(u)← C′(u)
1−P

TPar(u)
;

sort Nv to an array {z1, · · · , zl} in non-decreasing order of D′(zi);
BestCost← ∑

i<l
∏
x<i PTPar(zx)D

′(zi);
BestAction← move(v, z1);
return (BestCost, BestAction)

To prove Theorem 5.2.4, we provide an algorithm called OneExpTree-

Solver (see Algorithm 2), which is similar to NoExpTreeSolver. One-
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5.3. Optimal policy for EFC-CTP-Tree

ExpTreeSolver(s) computes the optimal cost of a 1-Exp-CTP-Tree T in

polynomial time, and returns the first action in a policy that achieves this op-

timum. The correctness of OneExpTreeSolver is a direct result of Lemma

5.2.3, and Theorem 5.1.1.

Note that by slightly modifying Algorithm 2 to cover cases where the

edge (Parent(v), v) is found blocked, one can easily extend Theorem 5.2.4

to 1-Exp-CTP-Trees where the edge (Parent(v), v) is unknown.

As NoExpTreeSolver takes O(n2logn), computing the table H can be

done in O(n4logn). As OneExpTreeSolver is called recursively once for

every vertex v ∈ T , in which either the table H is filled (only once), or

NoExpTreeSolver is repeated, the total run time of OneExpTreeSolver

is O(n4logn).

5.3 Optimal policy for EFC-CTP-Tree

Recall that a balanced tree is a tree in which every two vertices of the same

depth have the same height. Denote the factored cost of a tree T by D(T ).

Equal Factored Cost CTP-Tree (EFC-CTP-Tree) is a CTP-Tree T in which

T is balanced, and D(T Par(v)) = D(T Par(v′)) for every vertices v, v′ in the

same depth. We prove that there is an optimal policy in EFC-CTP-Tree

that is committing for every subtree; therefore every instance is an instance

of 0-Exp-CTP-Tree to which a polynomial time appears in Section 5.1 4. We

first show that a special case of EFC-CTP-Tree, called Identical-CTP-Tree,

admits a polynomial time solution. Next, using similar methods, we show

that EFC-CTP-Tree admits a polynomial time solution as well. Although

the latter results subsume the tractability of Identical-CTP-tree, proving the

former simplifies the proof.

4In fact, in this specific case, every committing policy turns out to be an optimal policy.
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5. The CTP on Trees

5.3.1 Polynomial time solution for Identical-CTP-Tree

Identical-CTP-Tree is a CTP-Tree T in which T Par(v) and T Par(v′) are iden-

tical for every two vertices v, v′ of the same depth 5. Note that every Identical-

CTP-Tree is EFC-CTP-Tree. By Lemma E.0.5 (see Appendix E), we have

that D(T Par(v)) = D(T Par(v′)) even if (Parent(v), v) is known to be un-

blocked (and (Parent(v′), v′) remains unknown) . In this section we assume

that the only zero cost edges are the terminal free edges in T .

Claim 5.3.1 Let T be an Identical-CTP-Tree. Then there is an optimal

policy which is T Par(v)-committing for every vertex v.

Proof: By induction on the height of the vertices in T . If v is a leaf (of

height 0) in T , then it is optimal to traverse the terminal free edge (v, t)

for zero cost. Assume that there is an optimal policy which is T Par(v)-

committing for every vertex v of height h− 1.

Let π be an optimal policy for T . Let z ∈ Tπ be a node where L(z) = b, in

which for a vertex v of height h, z is a first departure point of T (v) through

v. We show that T (v) must be blocked in b. Note that by Claim 2.3.1, πb is

optimal for the sub-instance of T with an initial belief state b.

Assume in contradiction that T (v) is not blocked. Then πb can be infor-

mally described as follows. Traverse a subgraph T ′ of T distinct from T (v);

if v is retraced, perform TRY (T Par(v′)) for a child v′ of v; if T Par(v′) is

blocked, retrace to v and continue with an optimal policy; see Figure 5.7.

Note that this traversal of T ′ in πb can be described as a macro-action,

which we denote by Travel(T ′). The result of Travel(T ′) is either reaching t

or retracing to v with a probability P T ′ . Denote by Bfail(T ′) the set of belief

states, with location v, reached by performing Travel(T ′) in b. Note that

T ′ need not be blocked in a belief state of Bfail(T ′). Then, as T Par(u) and

T Par(u′) are identical for every u, u′ children of v, we can make the following

assumption.

Assumption 5.3.2 There is a child u of v such that T Par(u) is not known

to be blocked, and such that πb(b
′) = TRY (T Par(u)) for every b′ ∈ Bfail(T ′).

5The default edge (s, t) is not considered a part of T .
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v

v′v1 v2

T ′

TPar(v′)

s

Figure 5.7: Identical-CTP-Tree. The vertex v is of height h. The ver-
tices v′, v1, v2 are of height h − 1. The gray lines mark the subgraphs T ′

of T , for which Travel(T ′) can be performed from v, and T Par(v′) for which
TRY (T Par(v′)) can be performed from v as well.

Denote the expected cost of Travel(T ′) by CT ′ . Let DT ′ = CT
′

1−PT ′ . As T ′

and T Par(v) are distinct, we can define, as in Section 4.2.2, a policy π′b for

Tb, obtained from πb, in which Travel(T ′) and TRY (T Par(v′)) are switched.

Then by the same argument as in Lemma 4.2.3, we have that C(π′b) < C(πb)

iff DPar(v′) < DT ′ (see Remark 4.2.4 for the case when P T ′ = 1). We then

show that DPar(v′) < DT ′ (see Lemma E.0.4 in Appendix E for details);

therefore C(π′b) < C(πb) contradicting πb being optimal.

2
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5. The CTP on Trees

With Claim 5.3.1 being proved, the following theorem is immediate:

Theorem 5.3.3 Identical-CTP-Tree admit a polynomial time solution.

Proof: Let T be an Identical-CTP-Tree. Then by Claim 5.3.1, there is

a vertex-committing policy (that is, a policy which is committing for every

vertex) π that is an optimal policy for T . Therefore we can consider T as

a 0-Exp-CTP-Tree, and run NoExpTreeSolver to find an optimal vertex-

committing policy π∗ on T . As both π and π∗ are vertex-committing, then

C(π∗) ≤ C(π). However, as π is optimal, then C(π) ≤ C(π∗). Therefore

NoExpTreeSolver returns an optimal policy for T , and a first move in a

policy that achieves this optimum.

2

In fact, as NoExpTreeSolver sorts the children of every vertex by the

factored cost, which in this case is equal, we get that every committing policy

for Identical-CTP-Trees, and for EFC-CTP-Tree, is optimal.

5.3.2 Polynomial time solution for EFC-CTP-Trees

Proving that Identical-CTP-Tree admit a polynomial time solution, we next

move to the more generalized EFC-CTP-Tree.

Theorem 5.3.4 EFC-CTP-Tree admit a polynomial time solution.

As in Section 5.3.1, the following theorem is immediate from the following

claim, which is a generalization of Claim 5.3.1.

Claim 5.3.5 Let T be an EFC-CTP-Tree. Then there is an optimal policy

that is T Par(v)-committing for every vertex v.

Proof: The proof is very similar to the proof of Claim 5.3.1. The only

difference is that in EFC-CTP-Trees, Assumption 5.3.2 is not obvious at

all, since if u1, u2 are children of v, then T Par(u1) and T Par(u2) are not

necessarily identical, and therefore the choice of which next child to ”try”

can be dependent on the status of edges that are revealed in Travel(T ′).
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5.3. Optimal policy for EFC-CTP-Tree

Therefore we do as follows. Recall that L(z) = b, where z ∈ Tπ is a first

departure point for T (v) and v is a vertex of height h. Assume in contra-

diction that T (v) is not blocked. Then the possible actions in b are divided

into two types: The first type, called try-child actions, is TRY (T Par(u)) for

a child u of v. The second type, called try-graph actions, is to traverse a

subgraph of T , distinct from T (v), in which the outcomes are either reaching

t or retracing to v. We denote these actions by Travel(T ′), and denote the

set of belief states reached after Travel(T ′) is performed in a belief state b,

in which v is reached (with probability P T ′), by Bfail(T ′).

Therefore we can describe πb as a stochastic (finite) sequence of subgraphs

{G(di)|i < k}, for some k > 0 (the length of the sequence is stochastic as

well). We have d0 = b and di ∈ Bfail(G(di−1)). For every i ≥ 0, π(di) is

either a try-child macro-action, and then G(di) is a subgraph of T , distinct

from T (v), or π(di) is a try-child macro-action, and then G(di) = T Par(u)

for a child u of v.

As T is assumed to have a default edge (s, t), then in every stochastic se-

quence of graphs the last subgraph is a subgraph of T , distinct from T (v). As

in any traversal of a subgraph, at least one unknown edge is being observed,

there is a belief state d reachable from B(b, π), such that the stochastic se-

quence of graphs {G(di)|1 < i < k} starting from d (then d1 = d) looks as

follows.

• G(d1) is a subgraph of T , distinct from T (v).

• For every d2 ∈ Bfail(G(d1)), the policy πd2 is a permutation of try-

child macro-actions. Once T (v) is found blocked, a (final) try-graph

macro-action is performed.

From Claim 2.3.1, we have that πd1 is optimal for Td1 , and πd2 is optimal

for Td2 . Therefore πd2 is a sequence of macro-actions of distinct graphs,

and we can follow the partition framework (see Section 4.2.2). Hence by

Corollary 4.2.6 and as the D(T Par(ui)) are the same for the children ui of

v, we can assume that there is a designated child u of v such that in every

d2 ∈ Bfail(G(d1)), π(d2) = TRY (T Par(u)). Therefore Assumption 5.3.2 is

verified.
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5. The CTP on Trees

We proceed as in Claim 5.3.1, and construct a policy π′d1 from πd1 , in

which TRY (T Par(u)) is switched with Travel(T ′), and continue exactly as

in the proof of Claim 5.3.1 to show that C(π′d1) < C(πd1) contradicting the

optimally of πd1 .

2

5.3.3 Factored-cost conjecture

We explore a relation between the factored-cost of a sub-tree, the cost of the

higher layers, and the approximation ratio of a CTP instance. Figure 5.8

depicts two layers of a CTP-Tree T .

v

v1 v2

TPar(u)

T ′

u

Figure 5.8: Two layers of a CTP-Tree. The grey lines indicate the macro-
actions TRY (T Par(u)) and Travel(T ′).

Assume that the agent is at v1, and the agent can either try a subtree

T Par(u) for a child u of v1 or cross (v, v1) for a cost w((v, v1)), and perform a

Travel(T ′) macro action, in which T ′, a subtree of T disjoint from T (v1), is

traversed for an expected cost C ′. The vertex v1 is retraced with some certain

probability P ′ < 1. Following the analysis in Sections 5.3.1 and 5.3.2, it is

optimal for the agent to traverse a subtree T Par(u) if and only if

D(T Par(u)) <
w((v, v1)) + C + P ′w((v, v1))

1− P ′ < w((v, v1))
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Based on this analysis, we can make the following conjecture, to which

we perform experiments in Section 5.4.

Conjecture 5.3.6 Let Nv be the children of vertex v in a CTP-Tree T . Then

the optimal cost for T is the optimal committing cost if for every vertex v 6= s

we have

max
u∈Nv
{D(T par(u))} < w((Parent(v), v))

.

5.4 Experimental Results

The results in Section 5.3 leave a gap that can be examined empirically w.r.t

the relation between optimal committing policies and optimal policies. The

objective in our experiments is twofold. In the first experiment, called Like-

lihood of commitment, we compare optimal committing policies w.r.t. op-

timal policies. We show an example where the cost of an optimal committing

policy is exponentially worse than the cost of an optimal policy. However,

we believe that for a uniformly sampled CTP tree, an optimal committing

policy is indeed optimal among all policies.

In our second experiment, called Comparing factored-cost, we com-

pare the factored-cost of the trees w.r.t the optimal committing policies. We

believe that the gap between the factored-cost of the subtrees is proportional

to the inability of an optimal committing policy to approximate an optimal

policy.

Recall that the cost of an optimal policy is called the optimal cost. The

cost of an optimal committing policy is called the optimal committing cost.

We first show the following example in which the optimal committing cost is

exponentially greater (in the size of the problem) than the optimal cost.

Example 5.4.1 Figure 5.9 is constructed with low cost unblocked edges (s, vi)

to allow the agent to ”‘visit”’ subtrees. In addition, there are zero cost edges
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5. The CTP on Trees

(vi, ui) with a blocking probability of 1/2 to ”‘lure”’ the agent into the sub-

trees, and very expensive always unblocked edges to encourage the agent to

test other subtrees. In a committing policy, once w.l.o.g. (s, v1) is traversed,

the agent is bound to cross the expensive edge (v1, w1) after revealing the

cheap adjacent edge (v1, u1) to be blocked. Therefore the optimal committing

cost is W/2 + 1. However, in an optimal policy, the low cost edges (s, vi) en-

able the agent to try another subtrees T Par(vi), and cross an expensive edge

only after all the cheap edges (vi, ui) in the graph are found to be blocked.

Therefore the optimal cost is no more than 4 + (1/2)n−1W (n− 1).

s

v1 v2 v3 vn

0| 12 0| 120| 120| 12

1 1 1 1

WW W W

u1 u2 u3 unw1 w2 w3 wn

Figure 5.9: CTP-Tree. The optimal committing policy has a cost of W/2+1,
while the optimal policy has a cost of no more than 4 + (1/2)n−1W (n− 1).

.

We conduct our experiments on a balanced tree as shown in Figure 5.10.

The edges (s, ri) are called the first layer, the edges (ri, vi) are called the

second layer. The edges (vi, ui) are called the cheap-edges, the edges (vi, wi)

are called the expensive-edges. Unless mentioned otherwise, all edge costs

and blocking probabilities are uniformly distributed.

Next, we constructed specific CTP models based on the CTP graph lay-

out from Figure 5.10, see Table 5.2. In model C all the edges are uni-

formly sampled from the same cost and blocking probability intervals. Mod-

els D,E,F ,E1,E2,F1, and F2 were constructed by having first and second

layers with low cost and small blocking probability. Models I1, I2, and I3

follow Example 5.4.1. Specifically, these models have cheap first and second

layers, and in addition a low cost, cheap edge to ”‘lure”’ the agent into the
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s

v0

u0 u1 u2 u3

v1 v2 v3

w0 w1 w2 w3

r0 r1 r2 r3

Figure 5.10: CTP-Tree. The edges (s, ri) are called the first layer, the edges
(ri, vi) are called the second layer. The third layer is composed of the so
called ”‘cheap-edges”’ (vi, ui), and the so called ”‘expensive-edges”’ (vi, wi).

subtree, and an additional high cost, expensive edge, to ”encourage”’ the

agent to visit other subtrees. We have taken 1000 samples from each CTP

Model.

Table 5.2: The CTP models for the CTP graph layout from Figure 5.10. Cost
range appears as (min cost, max cost). Blocking probability range appears
as (min blocking probability,max blocking probability). First layer edges are
always unblocked.
CTP
model

1st layer 2nd layer cheap-edge expensive-edge

cost cost prob. cost prob. cost prob.
C (0, 500) (0, 500) (0.1, 0.9) (0, 500) (0.1, 0.9) (0, 500) (0.1, 0.9)
D (0, 5) (0, 5) (0.1, 0.9) (0, 5) (0.6, 0.95) (500, 1000) (0.1, 0.9)
E (0, 10) (0, 500) (0.1, 0.9) (0, 500) (0.1, 0.9) (0, 500) (0.1, 0.9)
F (0, 5) (0, 5) (0.1, 0.9) (0, 500) (0.1, 0.9) (0, 500) (0.1, 0.9)
E1 (5, 35) (20, 60) (0.65, 0.95) (50, 150) (0.4, 0.8) (50, 150) (0.4, 0.8)
E2 (5, 35) 40 0.8 100 0.6 100 0.6
F1 (0, 10) (0, 10) (0.65, 0.95) (50, 150) (0.4, 0.8) (50, 150) (0.4, 0.8)
F2 (0, 10) 5 0.8 100 0.6 100 0.6
I1 (0, 10) (0, 10) (0, 0.2) (0, 500) (0.2, 0.8) (500, 1000) (0.4, 0.8)
I2 (0, 10) (0, 10) (0, 0.2) (0, 500) (0.2, 0.8) (1000, 2000) (0.4, 0.8)
I3 (0, 10) (0, 10) (0, 0.2) (0, 1500) (0.2, 0.8) (100, 2000) (0.4, 0.8)
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Likelihood of commitment We explore the likelihood that an optimal

committing policy is indeed optimal. Our results appear in Table 5.3. The

committing ratio is the ratio of samples in which the optimal committing

cost is the optimal cost. The approximation ratio is the ratio between the

optimal committing cost and the optimal cost. Our results show that when

all the edge weights and blocking probabilities are uniformly distributed over

(0, 500) and (0.1, 0.9), respectively(model C), then the committing ratio is

0.999. The approximation ratio among the non-committing samples is 1.014.

In fact our results show a maximum approximation ratio of 1.015, even in

models with a low committing ratio (Models D,E,F , and F1). Furthermore,

our experiments show that although the committing ratio was extremely low

(0 on models I1, I2, and 0.02 on I3), the maximal approximation ratio was

1.299 (model I3).

Another part of our experiments was to separate Identical-CTP-Trees

from the more general EFC-CTP-Trees. However, our experiments showed

no significant difference in the committing ratio and the approximation ratio.

To test Conjecture 5.3.6, we have sample model D in a search for a

counter-example. Such counter-example would be a sample in which the

optimal policy is non-committing, yet there is a vertex u, such that the

factored-cost of T par(u) is bigger than w(Parent(u), u). After running over

5000 samples, no such counter-example was found.

Table 5.3: Results for the CTP-model samples from Table 5.2.
CTP model committing ratio approximation ratio
C 0.999 1.014
D 0 1.015
E 0.984 1.001
F 0.109 1.004
E1 1 1
E2 1 1
F1 0.989 1.00002
F2 1 1
I1 0 1.134
I2 0 1.299
I3 0.02 1.2904
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Comparing factored-cost We tested the factored-cost of the trees w.r.t.

the approximation ratio. To do that we define the factored-cost gap as follows:

Denote the vertices in depth i by V (i), and denote the factored-cost of every

v ∈ V (i) by D(v, i). Let

gap(i) = max
v∈V (i)

{D(v, i)} − min
v∈V (i)

{D(v, i)}

We define the factored-cost gap of a CTP-Tree instance to be maxi{gap(i)}.
Note that a CTP-Tree with a factored-cost gap of 0 is an EFC-CTP-Tree

discussed in Section 5.3. Table 5.4 shows the approximation ratio and the

average factored-cost gap for every model with a low committing ratio. The

scatter of the samples for every model appears in Figure ?? and ??. Although

we did not find a significant relation between the factored-cost gap and the

committing ratio, it can be clearly seen that the more the factored-cost gap

grows, the more samples have a higher approximation ratio.

Table 5.4: Results for comparing approximation ratio with factored-cost gap.
CTP model committing ratio approximation ratio average factored-cost gap
D 0 1.015 895.247
F 0.109 1.004 387.066
I1 0 1.134 801.636
I2 0 1.299 1693.1506
I3 0.02 1.2904 1504.811
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Figure 5.11: Scatter graph for CTP-Models D.
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Figure 5.12: Scatter graph for CTP-Models F .
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Figure 5.13: Scatter graph for CTP-Models I1.
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Figure 5.14: Scatter graph for CTP-Models I2.
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Figure 5.15: Scatter graph for CTP-Models I3.
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Chapter 6

Repeated-CTP

6.1 Repeated CTP in disjoint-path graphs

In this chapter, we generalize CTP to a multi-agent variant where n agents

operate in the given graph. Note that there are many possible communication

and knowledge-sharing paradigms as well as different agent types for multi-

agent systems. Here we assume that the agents are fully cooperative and aim

to minimize their total travel cost. In addition, we assume a communication

paradigm of full knowledge sharing. That is, any new information discovered

by an agent (e.g., whether an edge is blocked or traversable) is immediately

made known (broadcast) to all other agents. This assumption is equivalent

to having a centralized control of all agents. Specifically, we introduce the

Repeated task multi-agent CTP, called Repeated-CTP, and denoted by CTP-

REP(n) for short, in which n agents need to travel from the start state to

the goal state. However, there is only one active agent at each point in time.

All other agents are inactive until the currently active agent reaches t. An

agent that reaches t becomes inactive again (is “out of the game”), and can

make no additional actions or observations. The goal is a natural extension

of single-agent CTP: all n agents begin at s and must reach t. We need

to find a policy for the agents that minimizes the expected total travel cost

of reaching this goal. The content of this chapter was published in [7]. A

journal version was recently submitted as well.
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6. Repeated-CTP

6.2 Repeated CTP in disjoint-path graphs

We extend the results on single-agent disjoint graphs CTP from Section 2.5,

to the case of repeated CTP with n agents, CTP-DISJ-REP(n). We show

that in CTP-DISJ-REP(n) there exists an optimal policy that is committing

for the first (leading) agent, and such that the rest of the agents (the following

agents) follow the last path successfully traversed by the leading agent. This

optimal policy, like the single-agent case, can be computed efficiently by

sorting the paths according to a simple measure, which needs to be adjusted

in order to account for the traversal costs of the n − 1 following agents.

Though apparently simple, proving optimality of such a policy is non-trivial.

The notations in this section are based on the notations of disjoint-path

graphs, see Section 2.5.

Let M be an instance of CTP-DISJ-REP(n) with k paths. Note that any

reasonable policy in M can be represented using only TRY and INV macro

actions as follows.

Let TRY (l, i) be the action in which agentAl tries path Ii. Let INV (l, i, j)

be the action in which agent Al performs INV (i, j). When the agent is ob-

vious from the context, we shorten the notation to TRY (i) and INV (i, j)

respectively.

Therefore, given a policy π for M , we consider the policy tree Tπ as

consists on the macro actions TRY and INV , and therefore contains only

two different types of action-arcs: TRY -arc, for the macro action TRY , and

INV -arcs for the macro action INV .

A policy that contains only TRY actions for an agent Ai is committing for

Ai. Likewise, a policy is committing (for a set of agents) if it consists of only

TRY actions for all these agents. Note that for a single agent, a committing

policy is also committing in the sense of Section 4.2. It is non-trivial to show

that in repeated CTP, TRY actions suffice for optimality – this requires

definition of the constrained followers-committing policies, discussed next.

Let π be a committing policy for M , where whenever A0 reaches t through

path Ii, the agents A1, · · ·An−1 traverse Ii as well. A policy π with this

property is called a followers-committing policy, and the agents A1, · · ·An−1
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6.2. Repeated CTP in disjoint-path graphs

are said to follow A0 in π. Note that this property allows us to define a multi-

agent macro-action for a path Ii, which we denote by TRYn(i) and acts as

follows. A0 tries Ii. If Ii is found unblocked, A0 reaches t and A1, · · ·An−1

traverse Ii as well; otherwise, if Ii is found blocked, A0 retraces to s (other

agents staying idle). The results of TRYn(i) are that either a terminal belief

state is reached by having all the agents in t (after traversing Ii), or a belief

state is reached in which all the agents A0, · · ·An−1 are in s and Ii is known

to be blocked.

Recall that Qi = 1 − Pi is the probability that path Ii is unblocked.

Denoting the expected cost of TRYn(i) by E[TRYn(i)], we have:

E[TRYn(i)] = nQiWi + E[BC(i)] (6.1)

Let π∗M be the followers-committing policy where A0 executes the com-

mitting policy of trying the paths by increasing order of E[TRYn(i)]
Qi

, and

A1, · · · , An−1 follow A0
1.

Theorem 6.2.1 π∗M is an optimal policy for M .

As the proof is non-trivial, we first present a proof outline, followed by

an example. The complete proof is in Section 6.4.

Proof outline: We first show that π∗M is optimal among all followers-

committing policies for M . Then we continue by induction on the number

of agents, n. For n = 1, M is also an instance of CTP-DISJ. Hence, by

Theorem 2.5.3, π∗M is optimal (in fact, with some adjustments, the proof of

Theorem 6.2.1 serves as an alternative proof of Theorem 2.5.3 as well; see

Remark 6.4.5 in Section 6.4).

We now assume inductively that for every instance M ′ of CTP-DISJ-

REP(n− 1), the followers-committing policy π∗M ′ is optimal, and show that

π∗M is optimal for M .

Recall that an INV -arc is an action arc in Tπ is which the action is INV .

Note that Tπ∗M contains no INV -arcs.

1For n = 1,E[TRYn(i)]
Qi

is the factored cost for (Ii, s, t)
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6. Repeated-CTP

Let π be an optimal policy for M , with a minimal number of INV -arcs

in Tπ. If π is followers-committing we are done. Hence we may assume that

π is not a followers-committing policy. Then there are two cases:

(1:) π is committing. Then Tπ does not contain INV -arcs. Assume

w.l.o.g. that A0 tries the paths in π in the order of {I0, I1, · · · Ik−1}. By the in-

duction assumption we may assume that A1 executes a followers-committing

policy, hence A2, · · ·An−1 follow A1 in π. As π is not a followers-committing

policy, we may assume that A1 does not follow A0. Then we can show that

there is a path Im such that

E[TRYn(m+ 1)]

Qm+1

<
E[TRYn(m)]

Qm

We can then define a policy π′ that is the same as π, except that Im+1 is

tried right before Im, such that C(π′) < C(π), contradicting the optimality

of π.

(2:) π is not committing. We can then show that Tπ contains a sub-

tree, T , with only one INV -arc, and define a policy π′, which is obtained

from π by replacing T with another tree, T ′, which has no INV -arcs at

all. We then show that C(π′) ≤ C(π), contradicting the minimal number of

INV -arcs in Tπ among the optimal policies of M . 2

Example: Consider Figure 6.1. We have E[TRY1(0)]
Q0

= 39.5, and E[TRY1(1)]
Q1

=

2.6. Hence by Theorem 6.2.1, the optimal single agent policy is committing

to try path I1 before I0. However, E[TRY38(0)]
Q0

= 95 and E[TRY38(1)]
Q1

= 95.1,

hence for n ≥ 38 agents, the optimal policy is for the first agent to try path

I0 before I1, and for the other agents to follow the first agent’s path to t.

6.3 Interleaved-action CTP in disjoint-path

graphs

We briefly consider interleaved action CTP in disjoint-path graphs (CTP-

DISJ-MULTI(n)), in which agents can start moving before the first active
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e0,0 : 1|0 e0,1 : 0.5|0.95

e1,0 : 1|0

e2,0 : 10, 000|0

I0

I1

I2

v0

v1

s t

e1,1 : 1.5|0.05

Figure 6.1: An simple example for CTP-DISJ-REP(n). For n < 38 the
optimal first macro-action for the first agent is TRY (I1). For n ≥ 38, the
optimal first macro-action for the first agent is TRY (I0).

agent has reached t. In this variant, it is by no means clear that the optimal

policy can be described using only TRY and INV macro actions. In fact,

it is easy to see that for more general graphs, the optimal policy requires

interleaved actions. For example, see Figure 6.2, which is constructed from

Figure 2.6 by adding a (certainly traversable) path that costs 100 from v1 to

t. The optimal 2-agent policy is to send the first agent to v1, and if e1,1 is

blocked, send the second agent to v0 to check e0,1, while the first agent waits

at v1.

Since for disjoint paths this type of scenario cannot occur, we are led

to suspect that there is no advantage to having more than one active agent

at a time in this topology. This instance was empirically checked in [7]

by generating the optimal policies (using value iteration) with and without

interleaved actions for small randomly generated problem instances. From

hundreds of such non-disjoint-path instances, more than 10% of the cases

required interleaved actions to achieve the optimal policy. Conversely, in all

of over a thousand such disjoint-path graph instances, the optimal policy for

CTP-DISJ-REP(n) was also optimal for CTP–DISJ-MULTI(n). Hence we

state the following:

Conjecture: Every optimal policy for CTP-DISJ-REP(n) is also optimal
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6. Repeated-CTP

e0,0 : 1|0 e0,1 : 0.5|0.95

e1,0 : 1|0

e2,0 : 10, 000|0

e4 : 100|0

I0

I1

I2

v0

v1

s t

Figure 6.2: A CTP-DISJ-MULTI(n) example in which the optimal policy
requires interleaved actions. Edge label w|p denotes edges cost w, blocking
probability p.

for CTP-DISJ-MULTI(n).

6.4 Complete proof for Theorem 6.2.1

We begin with some definitions and notations. If an agent traverses a path Ij

and reaches t, we say the agent has successfully traversed Ij. As every belief

state is defined by the probability function p over the edges (with b(e) = p(e)

for every e ∈ E), we can denote the expected cost of the macro action

TRYn(i) in a belief state b, by Eb[TRYn(i)]. Furthermore, as the status of

the edges of a path Ij is belief state dependent, we denote the probability

that Ij is unblocked in belief state b by Qj(b) (thus Qj(b0) = Qj), and define

Dn
i (b) =

Eb[TRYn(i)]

Qi(b)

(6.2)

For conciseness we denote Dl
i(b0) by Dl

i and in particular denote D1
i by

Di. Note that

Dn
i =

E[BC(i)]

Qi

+ nWi (6.3)

hence Di ≥ Wi, and for every l ≤ n we have:
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6.4. Complete proof for Theorem 6.2.1

Dn
i = Dl

i + (n− l)Wi (6.4)

Finally, recall that an action-arc in Tπ that represents an INV action is

called an INV -arc. Note that Tπ∗M contains no INV -arcs.

In order to show that π∗M is optimal, we first show that π∗M is optimal

among all followers-committing policies.

Lemma 6.4.1 Let π be a followers-committing policy for M . Then C(π∗M) ≤
C(π).

Proof: Every followers-committing policy π for an instance M of CTP-

DISJ-REP(n) can be re-cast as an equivalent CTP-DISJ problem instance

M ′. This is done as follows. M ′ extends M by adding, at the end of each

path Ii, an additional traversable edge ei,ri incident on t and bearing a cost

of (n − 1)Wi. In a followers-committing policy for M , all agents follow the

first agent, and all incur a cost of Wi. Thus there is a bijection F from

followers-committing policies in M , to committing policies in M ′, that pre-

serves expected costs, therefore C(π) = C(F (π)). Now suppose that π is

a followers-committing policy for M . By Theorem 2.5.3 (but see Remark

6.4.5), F (π∗M) is optimal for M ′, therefore C(F (π∗M)) ≤ C(F (π)), which en-

tails C(π∗M) ≤ C(π). 2

Next, we prove that π∗M is optimal among all policies for M . The proof

goes by induction on n, the number of agents in M . For n = 1, M is an

instance of CTP-DISJ-REP(1) that is also an instance of CTP-DISJ. Hence,

by Theorem 2.5.3, π∗M is optimal (in fact, with some adjustments, the proof

of Theorem 6.2.1 serves as an alternative proof of Theorem 2.5.3 as well; see

Remark 6.4.5 at the end of this proof). We now assume inductively that π∗M ′

is an optimal policy for every instance M ′ of CTP-DISJ-REP(n − 1), and

show that π∗M is optimal for M .

Let π be a policy for M that is not followers-committing. Assume in

contradiction that π is an optimal policy in which the number of INV -arcs in

Tπ is minimal. We show that there is a policy π′ that leads to a contradiction
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6. Repeated-CTP

in the following way: either C(π′) < C(π), contradicting π being optimal, or

otherwise C(π′) = C(π) and the number of INV -arcs in Tπ′ is smaller than

those of Tπ, contradicting the minimality of the number of INV -arcs in Tπ.

We then have two cases to consider:

(Case 1:) π is committing. Then Tπ contains no INV -arcs. Assume

w.l.o.g. that A0 tries the paths in π in the order of 〈I0, I1, · · · , Ik−1〉. By

the induction assumption we assume that π is followers committing for A1,

meaning that in π the only actions for A1 are TRY actions, and A2, · · · , An−1

follow A1. Therefore, as we show below in Remark 6.4.2, we may assume

that after A0 has reached t through a path Ij, there is a unique policy for

A1 · · ·An, called πj, which is independent of the edges which were found

blocked in the ”previous” paths Il for l < j. Then, every committing policy

π can be described as follows (see Figure 6.3 for an example). A0 tries the

paths in the order of 〈I0, I1, · · · , Ik−1〉; once A0 has successfully traversed a

path Ij, then in πj, the agent A1 tries the paths in {Ij, · · · , Ik−1} in a certain

permutation (note that Ij is known to be unblocked). These permutations

fully describe the policy since A2, · · · , An−1 follow A1. Note that the policies

(permutations) πj are truncated as TRY (1, j) always succeeds in πj and no

additional paths are tried.

Remark 6.4.2 Formally, let Bj be the collection of all possible belief states

that label a node in Tπ with an incoming TRY (0, j)-arc, and in which A0

is in t. Note that in these belief states, Ij is known to be unblocked hence

Dn−1
j (b) = (n − 1)Wj for every b ∈ Bj; Il is known to be blocked for every

l < j hence Dn−1
l (b) = ∞. Finally, as the Il are not yet traversed for every

l > j, we have Dn−1
l (b) = Dn−1

l . Therefore we can define πj to be the partial

policy of π starting at every such belief state b ∈ Bj.

Note that if A1 always follows A0 in π, then π is a followers-committing

policy and we are done. Therefore we assume there is an optimal policy, in

which there is a path successfully traversed by A0 and is not first tried by A1.

We then intend to show, as facilitated by the following lemma, that there is

a path Im for which Dn
m+1 < Dn

m.
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6.4. Complete proof for Theorem 6.2.1

A0

A1

S S S S S

F F F F

FFF

Im

πm

Im+1

π1 π2 π3 π5

TRY (1)

TRY (2)

TRY (3)

TRY (4) TRY (5)TRY (1)

TRY (2)

TRY (3)

TRY (3)TRY (4) TRY (4)TRY (5) TRY (5)

Figure 6.3: An illustration of a committing policy. The boxes indicate the
actions taken in every belief state. The directed arrows indicate the outcome
of such actions where S indicates that the agent A0 has reached t through a
certain path, while F indicates A0 has found that path blocked and retraced
to s.

Lemma 6.4.3 If Dn
l < Dn

j then (n− 1)Wl ≤ Dn−1
j for every n ≥ 2.

Proof: Assume in contradiction that (n − 1)Wl > Dn−1
j . Note that

Dn−1
j = Dj + (n − 2)Wj, and Dj ≥ Wj, implying (n − 1)Wl > (n − 1)Wj,

hence Wl > Wj. Then we have Dl ≥ Wl, implying Dl > Wj, and as

(n−1)Wl > Dn−1
j , we have Dl+(n−1)Wl > Dn−1

j +Wj, therefore Dn
l > Dn

j ,

a contradiction. 2

Now assume that Dn
i < Dn

i+1 for every path Ii. As for every path Ij, every

bj ∈ Bj and every l > j, we have Dn−1
j (bj) = (n − 1)Wj, and Dn−1

l (bj) =

Dn−1
l , we have by, Lemma 6.4.3, that π(bj) = TRY (1, j) which means A1

follows A0. Hence π is a followers-committing policy in contradiction to our

assumption. Therefore, as we assumed that all the Di are different, we have

Di > Di+1 for some i.

Let Im be the last path such that Dn
m > Dn

m+1 (in the example in Figure

6.3, the path Im is I4). Let π′ be the policy obtained from π by switching

TRY (0,m) and TRY (0,m+ 1). We show that C(π′) < C(π).

To write down the expected cost C(π) and C(π′), we need the following

observation. Note that π can be represented as a sequence of conditional
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operations for the paths, such that in each operation, A0 tries a path Il, and

either Il is traversed successfully and A1 executes πl, or Il is found blocked

and A0 returns to s. Therefore the expected cost of π is

C(π) =
∑
l<k

(
∏
c<l

Pc)Ql(Dl + C(πl)) (6.5)

and explicitly we have

C(π) =
∑
l<m

(
∏
c<l

Pc)Ql(Dl + C(πl))+

(
∏
c<m

Pc)Qm(Dm + C(πm))

+ (
∏
c<m

Pc)PmQm+1(Dm+1 + C(πm+1))

+
∑

m+1<l<k

(
∏
c<l

Pc)Ql(Dl + C(πl))

and

C(π′) =
∑
l<m

(
∏
c<l

Pc)Ql(Dl + C(π′l))+

(
∏
c<m

Pc)Qm+1(Dm+1 + C(π′m+1))

+ (
∏
c<m

Pc)Pm+1Qm(Dm + C(π′m))

+
∑

m+1<l<k

(
∏
c<l

Pc)Ql(Dl + C(π′l))

Note that C(πl) = C(π′l) for every l < m, and every l > m+ 1. We show

that C(πm+1) = C(π′m+1). As m < m + 1, and for every l > j > m, we

haveDn
l > Dn

j , it is implied from Lemma 6.4.3 that

C(πm+1) = (n−1)Wm+1. On the other hand, as Dn
m+1 < Dn

m, then, again by

Lemma 6.4.3, (n− 1)Wm+1 ≤ Dn−1
m . Hence if A0 successfully traverses Im+1

in π′, we may assume that A1 follows A0, so C(π′m+1) = (n−1)Wm+1 as well.

Then, as Dn
m+1 = Dm+1 + (n− 1)Wm+1, we get the following property:
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Property 1

C(π′) < C(π) if and only if

Qm+1(Dn
m+1 −Dm) < C(πm)− Pm+1C(π′m)

Let Iy be the first path that A1 tries in πm (for example in Figure 6.3,

Iy is I5). Obviously, the last path that A1 tries in πm is the unblocked path

Im. Note that once A0 successfully traverses Im in π′, A1 tries the remaining

paths in the same order as in πm, skipping Im+1, which is already known to

be blocked. We then have two cases to consider of whether Im+1 precedes Im

in πm. For each such case we show that C(π′) < C(π).

For example, in Figure 6.3, Im is I4, and Im+1 is I5. The first action in πm

is TRY (5). Hence A1 tries I5 in πm, before traversing I4, which was already

successfully traversed by A0 (hence known to be unblocked).

To handle the two cases we need the following technical lemma.

Lemma 6.4.4 Dn
m+1 < Dm +Dn−1

y

proof: First observe that Wy < Dm. Note that in πm, Iy is tried before

Im, implying Dn−1
y < (n− 1)Wm. Therefore, as Dn−1

y = Dy + (n− 2)Wy and

as Wy ≤ Dy, we have (n−1)Wy < (n−1)Wm which entails Wy < Wm ≤ Dm.

Now, m + 1 ≤ y implies Dn
m+1 < Dn

y . Then since Dn
y = Wy + Dn−1

y and

Wy < Dm, Lemma 6.4.4 follows. 2

Case 1.1: Im precedes Im+1 in πm.

Therefore in π′m, A1 tries exactly the same paths and in the same order

as in πm, which implies C(π′m) = C(πm).

In addition, as the first path that A1 tries in πm is Iy, we have that

Dn−1
y ≤ C(πm). Then from Lemma 6.4.4 we have Dn

m+1 < Dm + C(πm).

Therefore, as C(π′m) = C(πm) and as Qm+1 = 1 − Pm+1, we have from

Property 1 that C(π′) < C(π).

Case 1.2: Im+1 precedes Im in πm. Denote the order on permutation πm

by <m. Then we have
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C(πm) =
∑

l<mm+1

(
∏
h<′l

Ph)QlD
n−1
l

+ (
∏

h<mm+1

Ph)Qm+1D
n−1
m+1

+
∑

m+1<ml<mm

(
∏
h<′l

Ph)QlD
n−1
l + (

∏
h<mm

Ph)(n− 1)Wm (6.6)

As Im+1 is already known to be blocked, whenever executing π′m, we have

C(π′m) =
∑

l<mm+1

(
∏
h<ml

Ph)QlD
n−1
l

+
1

Pm+1

∑
m+1<ml<mm

(
∏
h<ml

Ph)QlD
n−1
l +

1

Pm+1

(
∏

h<mm

Ph)(n− 1)Wm (6.7)

Hence

C(πm)− Pm+1C(π′m) =

(
∏

h<mm+1

Ph)Qm+1D
n−1
m+1

+Qm+1

∑
l<mm+1

(
∏
h<ml

Ph)QlD
n−1
l ≥

(
∏

h<mm+1

Ph) +
∑

l<mm+1

(
∏
h<ml

Ph)Ql =

Qm+1D
n−1
y (6.8)

where Equation (6.8) occurs because Iy is the first path that A1 tries in

both πm and π′m; therefore Dn−1
l > Dn−1

y for every l >m y. Equation 6.7 is

due to the fact that

∑
l<mm+1

(
∏
h<ml

Ph)Ql +
∏

h<mm+1

Ph = 1
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Then, from Lemma 6.4.4, we get Dn
m+1 − Dm < Dn−1

y , and applying

Property 1, we get C(π′) < C(π).

(Case 2:) π is not committing. Then Tπ contains INV -arcs. We find

another policy π′ such that C(π′) ≤ C(π) and Tπ′ contains a smaller number

of INV -arcs than Tπ, thus contradicting the minimality of the number of

INV -arcs in Tπ among optimal policies.

By the induction assumption, π is a followers-committing policy forA1, · · ·An−1;

therefore the only INV actions in π are for A0 (see Figure 6.4(a) for an ex-

ample of such a non committing policy). The last action before A0 reaches

t must be a TRY action. Hence Tπ contains a subtree with a root with a

label b, called Tπb , such that π(b) = INV (0, i, j) for some i < k, j < ki, and

π(b) is the only INV -arc in Tπb . Assume without loss of generality that no

paths are known to be blocked in b, and that the paths are ordered by the

non-decreasing order of the Dn
i (b).

Let π′b be the optimal followers-committing policy starting at b (meaning

the optimal followers-committing policy for Mb). Note that Tπ′
b

contains no

INV -arcs at all.

We first show that C(π′b) ≤ C(πb). Next we define π′ to be the policy for

M obtained from π by replacing πb with π′b. As the number of INV -arcs in T ′π

is smaller than in Tπ, and as C(π′b) ≤ C(πb), we have that C(π′) ≤ C(π), and

Tπ′ contains a smaller number of INV -arcs than Tπ, violating our assumption

of a minimal number of INV -arcs in Tπ.

To see that C(π′b) ≤ C(πb), first note that

C(π′b) =
∑

0≤l<k
(
∏
x<l

Px)QlD
n
l (b) (6.9)

(a product over a zero term is defined to be 1).

To develop C(πb), we make the following observation. Recall that the

outcome of all INV (0, i, j) actions is that A0 is at s. Let bl, for l ≤ j, be the

belief state reached as the outcome of the action INV (0, i, j) performed at b,

in which the edge ei,l is found blocked. Let b∗ be the belief state reached as
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the outcome of INV (0, i, j) executed at b in which ei,j is found unblocked.

Using this notation, πb can be described as follows: execute INV (0, i, j);

if ei,l is found blocked for some l ≤ j, execute πbl; otherwise execute πb∗ .

For example, Figure 6.4(a) describes a policy for A0 in a CTP-REP in-

stance with 4 paths in which the last INV -action is INV (I4, 3). If e4,j, for

j ≤ 3, is found blocked, the followers-committing policy πbj is executed. If

e4,3 is found unblocked, the followers-committing policy πb∗ is executed. The

alternative policy in which πb is replaced with a followers-committing policy

is seen in Figure 6.4(b).

A0
F FF

πb1 πb2 πb3

πb∗
e3,2 = unblocked

e4,1 = blocked
e4,2 = blocked

e4,3 = unblocked

e4,3 = blocked

TRY (1) TRY (2) TRY (3) TRY (4)INV (3, 2) INV (4, 3)

πb

(a) An illustration of a non-committing policy. F indicates agent A0 has found a certain path blocked and
retraced to s. The rest of the agents are assumed to follow A0.

A0
F FF

e3,2 = unblocked

INV (3, 2)TRY (1) TRY (2) TRY (3) TRY (4)

(b) An illustration of an alternative policy for the policy in Fig, 6.4(a) in which πb is
replaced by a followers-committing policy. The rest of the agents are assumed to follow A0

Figure 6.4:

For an edge ej, let Qj
i :=

∏
x≤j q(ei,x) be the probability that the edges

{ei,0, · · · .ei,j} are unblocked. As neither the Tπbl nor Tπb∗ contains an INV -

arc (thus the πbl and πb∗ are committing policies), we may assume without

loss of generality, by Case 1 (in which we have shown that there is an optimal

followers-committing policy among all committing policies) that the πbl and

πb∗ are followers-committing policies.

Note that Dn
l (bh) = Dn

l (bj) for every h ≤ j, and Dn
l (bj) = Dn

l (b∗) for

every l 6= i. Therefore, as the same paths are blocked in both πbh and πbj ,
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6.4. Complete proof for Theorem 6.2.1

we have that C(πbh) = C(πbj) for every h ≤ j. Therefore:

C(πb) = Qj
i (2Wi,j + C(πb∗)) +

∑
x≤j

E[BCx(i)] + (1−Qj
i )C(πbj) (6.10)

The expected cost of πbj is easily shown to be:

C(πbj) =
∑

0≤l<i
(
∏
x<l

Px)QlD
n
l (b) +

1

Pi

∑
i<l<k

(
∏
x<l

Px)QlD
n
l (b) (6.11)

The development of C(πb∗) is a bit more complicated. This is because in

b∗, some of the edges of path Ii are known to be unblocked; hence, in πb∗ ,

the path Ii may be tried sooner than in πbj .

Therefore we proceed as follows. For x < ki let E[BCx(i)] be the expected

backtracking cost given that ei,y is unblocked for every y < x, and given that

ei,x is blocked. Recall that q(e) is the probability that edge e is unblocked,

giving:

Dn
i (b∗) =

∑
j<x<ki E[BCx(i)]∏
j<x<ki q(ei,x)

+ nWi

hence

Dn
i (b∗) = Dn

i (b)−
∑
x≤j E[BCx(i)]

Qi

(6.12)

Therefore Dn
i (b∗) ≤ Dn

i (b).

Now let Im be the first path such that Dn
i (b∗) ≤ Dn

m(b) ≤ Dn
i (b). Then

we have:
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6. Repeated-CTP

C(πb∗) = ∑
0≤l<m

(
∏
x<l

Px)QlD
n
l (b) + (

∏
x<m

Px)
Qi

Qj
i

Dn
i (b)+

(1− Qi

Qj
i

)
∑

m≤l<i
(
∏
x<l

Px)QlD
n
l (b)+

(
1

Pi
)(1− Qi

Qj
i

)
∑
i<l<k

(
∏
x<l

Px)QlD
n
l (b) (6.13)

Therefore

C(πb)− C(π′b) =

QJ
i 2W<i,j> +

∑
x≤j

E[BCx(i)]+

QiD
n
i (b)(

∏
x<m

Px −
∏
x<i

Px)−

Qi

∑
m≤l<i

(
∏
x<l

Px)QlD
n
l (b) (6.14)

As Dn
l (b) ≤ Dn

i (b) for every l ≤ i, and as

∑
m≤l<i

(
∏
x<l

Px)Ql =
∏
x<m

Px −
∏
x<i

Px

we have

C(πb)− C(π′b) ≥ QJ
i 2W<i,j> +

∑
x≤j

E[BCx(i)]

and as obviously,

QJ
i 2W<i,j> +

∑
x≤j

E[BCx(i)] ≥ 0

we have C(π′b) ≤ C(πb), as required. 2
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6.4. Complete proof for Theorem 6.2.1

Remark 6.4.5 Note that the proof of Theorem 6.2.1 serves as a proof for

Theorem 2.5.3 of a single agent CTP (i.e., for n = 1). As in Case 2, the

number of agents does not play a role, we only need to adjust Case 1 to do

the proper adjustments for n = 1. Recall that for n = 1, there are no agents

to follow A0. Therefore, in Case 1, the cost of the policy for the following

agents should be set to 0, and the value of all the Dn−1
l (b) should be set to 0

as well.
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Chapter 7

Conclusion

7.1 Related Work

In 1989, Papadimitriou & Yannakakis [31] introduced the Canadian Traveler

Problem and showed that an online version of the CTP, in which the ratio

between the optimal solution and the shortest path is bounded, is PSPACE-

complete. Membership in PSPACE and #-P hardness was shown for the

stochastic version. The proof that the CTP is PSPACE-complete (Chapter

3, and also [14]) closes this complexity gap. One of the techniques we use

in that proof, the use of CTP with dependency (CTP-Dep), was explored

in an M.Sc. Thesis of Doron Zarchi [46] in which heuristic solutions were

considered for CTP-Dep. An alternative preliminary and independent proof

of the result in Chapter 3 appears in a graduate thesis of Cenny Wenner [43],

as well as the complexity of policy representation, which we did not pursue

in this work.

In 1991 Bar-Noy and Scheiber [3] introduced several variants of the CTP.

In one of them, called Recoverable CTP, a blocked edge does not remain

blocked forever, but each vertex v has a recovery time l(v) ∈ [0,∞) for the

edges adjacent to v, such that after an edge is revealed to be blocked, the

agent can wait l(v) time and afterward the edge becomes unblocked. Bar-Noy

and Scheiber showed a polynomial time strategy that minimizes the expected

travel time in cases where the recovery time of a vertex v is short - relative
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7. Conclusion

to the travel time of the edges adjacent to v.

Another variant first explored in [3] is the so-called k−CTP , and in which

an upper bound of k blocked edges is given as a part of the problem. Bar-

Noy and Scheiber presented a travel strategy, polynomial for any constant

k, which finds the shortest worst-case travel time. They also showed that in

cases where k is not constant, finding such a strategy is PSPACE-complete.

k − CTP was further explored [44, 45].

In 2008, Nikolova & Karger [30] explored another variant of CTP with

the costs of the edges coming from a general known probability distribution .

Nikolova & Karger showed that if the value of the edges incident to a vertex

v is re-sampled every time we reach v, there is a natural MDP that solves this

problem in polynomial time. The problem is also easy to solve in cases where

the graph under discussion is directed and acyclic (DAG). Then, assuming

that all the edges have independent and identical distribution, Nikolova &

Karger showed an optimal policy for disjoint-path graphs. With a further

limitation to (0,1) Bernoulli edges, they also showed optimal policy for binary

trees. Note that this variant of trees is different from the CTP-Tree presented

in Chapter 5.

In 2010, Eyerich, Keller, and Helmert [12] introduced and compared sev-

eral heuristics and algorithms for the CTP. Apart from introducing obser-

vations and notations that are used throughout this work, one of their con-

tributions was to consider a state-of-the-art approach called UCT [22], as a

suggested sampling scheme for a CTP solver. This work was later followed

by Bnaya et al. [7], who generalized the UCT algorithm for Repeated-CTP,

and in which the results in Chapter 6 were published. The ”optimistic” pol-

icy, suggested in [7] is based on the ”free-space assumption” introduced in

[23]. Other works on repeated, multi-agent navigation problems appear in

[45, 29, 13].

In 2009, Bnaya, Felner and Shimony [6] showed that the CTP has a poly-

nomial time solution on disjoint path graphs. This result, which this work

lies heavily on, is given in Section 2.5 and in Chapter 6. Apart from that,

a variant of the CTP with Remote Sensing (Sensing-CTP) was introduced

in [6]. In Sensing-CTP, the agent can reveal the status of a remote edge
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7.1. Related Work

for a non-negative cost. Bnaya, Felner, and Shimony [6] compared various

algorithms which solve Sensing-CTP.

Another variant of Sensing-CTP called First-Sensing-CTP was discussed

in the M.Sc. Thesis of Olga Maksin [27]. In First-Sensing-CTP, the agent can

only traverse a path known to be unblocked. Therefore, revealing the status

of the edges must be done through sensing actions, prior to any move action.

A variant of First-Sensing-CTP in which all the edges have a move cost 0,

is a special case of a problem known as the Sequential Testing Problem, in

which a system is tested through its components, which are connected in a

graph structure. Every component has a failure probability, and a testing

cost. The objective is to find a policy that minimizes the expected testing

cost of the system [39, 40, 5]. Sequential testing is widely explored, and

appears under various names [20, 17].

Variants and related problems. An alternative definition of the CTP

lies in Operation Research. Polychronopolous and Tsitsiklis (1996) [33] have

defined the Independent Stochastic Path Problem with Recourse (I-SSPPR)

in which there is a distribution over the costs of the edges. This problem is

a special model of the R-SSPPR problem, defined in [33], in which a limited

dependency over the cost of the edges is allowed. Dynamic programming

algorithms were presented in [33] for both models, as well as complexity

gaps.

An earlier version of the Stochastic Shortest Path Problem with Recourse

(SSPPR) appears in [2]. The actions allowed in [2] are for the agent to follow

a pre-chosen path from s to t, and choose a recourse if and only if this path

has become blocked. A dynamic programming algorithm was presented in

[2] that solves the SSPPR. Our result in Chapter 3 shows that this variant

of the SSPPR is PSPACE-complete as well. In 2003, Provan [34] discussed

various versions of the SSPPR, and suggested a polynomial time algorithm

for cases in which every edge is re-sampled after every move the agent makes.

Other works in which the problem is to find the expected shortest path in a

stochastic network appear in [38, 9, 15, 25, 24, 42].

Generally, navigating in stochastic graphs, or stochastic networks, has
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7. Conclusion

received a lot of attention. For example, the Online graph exploration [28]

where the agent must visit each vertex in an unknown graph, or [18], where

certain paths can be quarried in an unknown network. Another problem is

the so called ”sabotage game” [21], where an adversary can block edges in a

graph, after every move the agent makes. Another example for network rout-

ing problems with local or global reliability appears in [37]. Other properties

of stochastic weighted graphs can be found in [10].

Finally, a recent variant is the Stochastic on Time Arrival (SOTA) prob-

lem, where a time budget is given for a stochastic network, and the objective

is to find a strategy that maximizes the probability of arriving at the desti-

nation within the specific time frame. This variant was explored in [35].

7.2 Summary and future work

The Canadian Traveler Problem (CTP) formalizes a problem in navigation

under uncertainty. The objective is to find a strategy to reach from a given

source to a given destination where a road can be found to be blocked upon

reaching that road. As the CTP is a problem in decision-making under

uncertainty, we model the CTP as a Deterministic Partial Observable Markov

Decision Process (Det-POMDP). The description of a Det-POMDP as an

AND/OR tree is used for theoretical analysis.

Having shown that the CTP is PSPACE-hard (Chapter 3), several related

questions on variants of CTP and CTP with restricted topologies arise. One

issue of particular interest is the question of efficiently finding approximately

optimal actions. The proof in Section 3.3 makes use of rather small gaps

between expected values of two candidate actions, and thus leaves open the

possibility of efficient approximation algorithms.

Studies of the competitive analysis of the CTP reveal rudimentary bounds

on approximability. Denoting by k the number of uncertain edges in an in-

stance, there exist for the undirected case polynomial-time algorithms achiev-

ing competitive ratios of 2k + 1 [44]. As a consequence, the stochastic CTP

can be approximated within a factor of 2k + 1. With a slightly improved

analysis, the same algorithm yields a 2n+ 1-approximation. In the directed
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case, existing results from competitive analysis only yield approximations of

2k+1 + 1 and 2n+1 + 1, respectively [45].

These approximation algorithms forgo entirely the stochastic nature of

the problem and leave open considerable improvements. A preliminary work

of ours (with Cenny Wenner) shows, by reduction from the {1, 2}-TSP [11],

that the CTP is hard to approximate up to a certain constant.

Another variant of CTP that we find of interest is CTP with ”reset edges”

(Reset-CTP). In Reset-CTP, the CTP graph is directed acyclic, apart from

always unblocked directed edges, called reset edges, that connect every ver-

tex to s. The motivation is a decision-making system in which retracing

is impossible, except for the possibility to go back to the starting position

(while keeping all the knowledge acquired so far) for a certain cost. A special

variant called 0-Reset-CTP is when all the reset edges have zero cost. A

preliminary work of ours (with Amit Benbassat) shows that 0-Reset-CTP is

PSPACE-complete as well.

The partition framework technique, presented in Chapter 4, can serve to

decompose a CTP-instance into several components, followed by implement-

ing an independent heuristic on each component, thus gaining an overall

improved heuristic. Such a decomposition can be obtained by considering

certain edges to be blocked, at the cost of losing optimality.

The problem of whether CTP-Tree is NP-hard remains open. Solving 1-

CTP-Tree where the outgoing edges of the exploration vertex are unknown,

remains a challenge as well. With minor modification, the algorithm 1-Exp-

CTP-Tree presented in Chapter 5 can be implemented for 1-CTP-Tree with

a constant j number of unknown outgoing edges of the exploration vertex v1.

This is done by constructing 2j tables; one table for every possible observation

of the outgoing edges of v1. With another minor modification, 1-Exp-CTP-

Tree can be used to solve k-CTP-Tree, where every exploration vertex has

a committing parent, committing children, and committing siblings. The

problem of 2-CTP-Tree where both a vertex and its parents are exploration

vertices is still a challenge.

A possible generalization of CTP-Tree is a CTP with a series-parallel

graph structure (SP-CTP). In SP-CTP, unlike CTP-Tree, a vertex can be
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reached from s through more than one simple path; therefore we believe that

SP-CTP contains more challenges than CTP-Tree. A possible constraint

for SP-CTP is that the agent is not only committed to a certain subgraph,

but must retrace his own steps, once that subgraph is found blocked. The

theoretical and empirical analysis of this variant is a future work.

Repeated-CTP was found tractable on disjoint-path graphs (Chapter 6).

We conjectured that Interleaved-CTP on disjoint-path graphs is tractable as

well, and specifically, given a disjoint-path graph, every optimal for Repeated-

CTP is also optimal for Interleaved-CTP. This conjecture was empirically

checked in [27] in which, in over a thousand disjoint-path graph instances,

no counter-example was found.

In short, the following presents the contributions of this work.

1. Proving that CTP is PSPACE-complete, thus solving a two decades

old open problem (Chapter 3). This result appeared in [14].

2. Proving that the optimal cost for the CTP is monotonically non-decreasing

in edges costs and blocking probabilities (Section 4.1).

3. Introducing constrained-CTP (Section 4.2).

4. Introducing the CTP partition framework, which provides a mechanism

for CTP decomposition (Section 4.2.2).

5. Introducing CTP-Tree (Chapter 5).

6. Efficiently solving CTP-Tree with no exploration vertices (Section 5.1).

7. Efficiently solving CTP-Tree, which has a single exploration vertex,

with known outgoing edges (Section 5.1).

8. Efficiently solving EFC-CTP-Tree (Section 5.3), empirically testing

other CTP-Tree instances (Section 5.4).

9. Introducing Repeated-CTP and efficiently solving Repeated-CTP on

disjoint path graphs (Chapter 6). This result appeared in [7]. A journal

version was recently submitted as well.
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Appendix A

Claim 2.3.1 If π∗ is an optimal policy for a Det-POMDP M , and b ∈
BM(b0, π

∗), then π∗b is an optimal policy for Mb.

Proof: Assume in contradiction that there is a policy π′b for Mb such that

C(π′b) < C(π∗b ). Recall that BMb
= BM(b) is a subset of BM . Let π′ be the

following policy for M : for every d ∈ BMb
, let π′(d) = π′b(d), and for every

d 6∈ BMb
, let π′(d) = π∗(d). For v ∈ V where L(v) = b, let Hv = {v0, · · · vl}

be the trunk of v. Then v0 = r, and vl = v. Denote L(vi) by bi, for every

i < l. We prove by backward induction on l, that V π′(vi) < V π∗(vi) for every

i < l. Then, as C(π′) = V π′(r) and C(π∗) = V π∗(r), it follows that π∗ is not

optimal, contradicting the claim assumption.

For the basis of vl we have that L(vl) = b, and as C(π′b) = V π′(v) and

C(π∗v) = V π∗(v), we have that V π′(vl) < V π∗(vl).

We prove that V π′(vi) < V π∗(vi) for i < l. First assume that vi is an

OR-node. As bi 6∈ BMb
we have that π′(bi) = π∗(bi) Therefore

V π′(vi) = c(vi, vi+1) + V π′(vi+1) (A.1)

and

V π∗(vi) = c(vi, vi+1) + V π∗(vi+1) (A.2)

By the induction assumption V π′(vi+1) < V π∗(vi+1), therefore V π′(vi) <

V π∗(vi).

Next, assume vi is an AND-node. Denote the set of observation re-
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ceived in a state j, after an action a was performed at belief state b, by

Z(b, a, j). As bi−1 6∈ BMb
, we again have that π′(bi−1) = π∗(bi−1). Hence

Z(bi−1, π
′(bi−1), j) = Z(bi−1, π

∗(bi−1), j) for every state j ∈ sup(bi). There-

fore we have by Equation (2.8)

V π′(vi) =
∑

(vi,u)∈E
(p((vi, u))V π′(u)) (A.3)

and

V π∗(vi) =
∑

(vi,u)∈E
(p((vi, u))V π∗(u)) (A.4)

where E is the set of outgoing observation-arcs from vi.

Note that (vi, vi+1) ∈ E, and for every node u where (vi, u) ∈ E and

L(u) 6= bi+1 , we have BM(L(u)) ∩ BM(b) = ∅. Hence for every belief state

d ∈ BM(L(u)), we have π′(d) = π∗(d), which implies V π′(u) = V π∗(u). By

the induction assumption we have V π′(vi+1) < V π∗(vi+1). Therefore from

Equation A.3 and Equation A.4 we have V π′(vi) < V π∗(vi) as required.

2
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Appendix B

B.1 Bayes Network construction

We describe the layout of the Bayes Network (Y,A, P ) that is required for the

proof of Theorem 3.2.1. The set Y of random variables is described as follows.

The universal edges (vi, vi1), and (v̄i, v̄i1) are represented by the random

variables fi, f̄i for every universal variable xi. For every variable xi and clause

cj, the observation edges (oij, vij), and (ōij, v̄ij) are represented by the random

variables eij, and ēij respectively. The chance edges (r1, r
′
1) and (r2, r

′
2) are

represented by the random variables odd, and even respectively. All the

random variables described so far have a range of {blocked, unblocked}. In

addition for every i ≤ m, we have random variables ci, and di called clause-

variables with a range of {0, 1}. The clause-variable ci is 1 if and only if the

observation edges that are related to the clause ci are found blocked. The

clause-variable di describes the XOR operation between the clause-variables

di−1, and ci.

The layout of the network along with the conditional probability tables

appears in Figures B.1,B.2, and B.3. Figure B.1 describes the dependency

between the universal edges. Figure B.2 describes an example of the depen-

dency between the observation edges that represent three literals that appear

in the same clause. Finally, Figure B.3 describes the network that allows the

dependency of the chance edges. Note that BN is a polytree with a size

linear in the size of the input formula Φ. Therefore probabilistic inference

on BN can be done in a time linear to the size of Φ as well.
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B.

𝑃(  𝑓𝑖|𝑓𝑖)

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 0

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 1

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 1

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 0

 𝑓𝑖𝑓𝑖

 𝑓𝑖

𝑓𝑖

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 0.5

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 0.5

𝑓𝑖 𝑃(𝑓𝑖)

Figure B.1: The segment of the Bayes network construction that describes
the dependency between the universal edges.

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 0.5

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 0.5

𝑒13 𝑃(𝑒13)

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 0

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 1

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 1

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 0

𝑒13

 𝑒23

𝑒43

𝑐3

 𝑒23𝑒13 𝑃(  𝑒23|𝑒13)

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 0

𝐵𝑙𝑜𝑐𝑘𝑒𝑑 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 1

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 1

𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 0

 𝑒23 𝑒43 𝑃(𝑒43|  𝑒23)

0 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 0

0 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 1

1 𝐵𝑙𝑜𝑐𝑘𝑒𝑑 1

1 𝑈𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑 0

𝑐3 𝑒43 P(𝑐3|𝑒43)

Figure B.2: An example of the Bayes network construction that describes
the dependency between the observation edges. The clause in description is
c3 = (x1 ∨ ¬x2 ∨ x4).

B.2 Baiting gadgets

Let g = BG(u, v) be a baiting gadget with a parameter l > 1, defined

in Section 3.3.1 (see Figure 3.2, appears below as well). Recall that π (as

defined in Section 3.3.1) is the following policy for g: when at u for the

first time, proceed along the path (u, v1, · · · , vN , v) to v, taking the zero-cost

shortcut to t whenever possible, but never backtracking to u. From v continue

with any optimal policy.
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B.2. Baiting gadgets

0 Blocked 1

0 Unblocked 0

1 Blocked 0

1 Unblocked 1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

𝑐3𝑐2𝑐1 𝑐𝑖+1 𝑐𝑚

𝑑1 𝑑2 𝑑𝑖−1 𝑑𝑖 𝑑𝑚−1
𝑑𝑚−2

𝑒𝑣𝑒𝑛𝑜𝑑𝑑

𝑑1 𝑃(𝑑1 𝑐1,𝑐2𝑐2𝑐1

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

𝑑𝑖𝑐𝑖+1𝑑𝑖−1 𝑃(𝑑𝑖 𝑑𝑖−1,𝑐𝑖+1

𝑑𝑚−1 𝑜𝑑𝑑 𝑃(𝑜𝑑𝑑|𝑑𝑚−1)

0 Blocked 0

0 Unblocked 1

1 Blocked 1

1 Unblocked 0

𝑑𝑚−1 𝑃(𝑒𝑣𝑒𝑛|𝑑𝑚−1)𝑒𝑣𝑒𝑛

Figure B.3: The segment of the Bayes network construction that describes
the dependency between the chance edges. The di’s variables describe a XOR
operation between di−1, and ci.

In formal terms, the above description of π should be interpreted as fol-

lows. A partially specified policy is relevant only to belief states for which it

specifies an action. π is relevant to any belief state b, where Loc(b) = u and

the state of all the zero-cost shortcut edges (vi, t) in the gadget are unknown.

π is also relevant to belief states reachable from b by acting according to π.

In any belief state consistent with such b, traverse the edge (u, v1). Likewise,

at any belief state where we are at vertex vi (for 1 ≤ i ≤ N), if the zero-

cost shortcut edge (vi, t) is traversable, then traverse it. Otherwise traverse

the edge (vi, vi+1) (except when i = N , in which case traverse (vN , v)). At

any belief state where we are at v, perform an action that is the first action

in some optimal policy. Note that when acting according to π, it is indeed

only possible for the zero-cost shortcut edges in the baiting gadget to be

unobserved if this is the first time we are at u.

Apart from π, other policies at u that are not clearly suboptimal are:

• Choose not to traverse (u, v1).

• The following type of policies denoted by πj, for j ≤ N : execute π

until reaching vj; if (vj, t) is unblocked, reach the destination through

(vj, t); otherwise, retreat to u and execute an optimal policy with an
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v1 v2 vN

0| 120| 120| 12

t

u v

l

l
N+1

l

l
N+1

l
N+1

Figure 3.2: A baiting gadget BG(u, v) with a parameter l > 1. Edge label
c | p denotes cost | blocking probability. The optimal policy at u is to cross
the path (u, v1, · · · , vN , v), taking a shortcut edge to t whenever such an edge
is found unblocked. After reaching v, retracing to u in g costs at least l.

expected cost of Mj ≥ 0.

Finally, we set N = 2dlog2(4l)e − 1, implying N + 1 ≥ 4l.

Claim 3.3.3 When at u for the first time, under Invariant 3.3.2, π is

optimal for a baiting gadget g = BG(u, v) with a parameter l > 1. After

reaching v, it is suboptimal to backtrack to u in g.

Proof: Denote by K ≥ 0 the expected cost of every optimal policy executed

once v is reached. As there is a cost l shortcut edge (v, t), it is clear that

K ≤ l. Therefore, as retracing g from v to u costs l, it is always suboptimal

to retrace g once v is reached. We first show that C(π) < 1, hence under

Invariant 3.3.2, choosing not to traverse (u, v1) is suboptimal.

Note that for every i ≤ N , the probability that (vi, vi+1) is traversed in

π is (1
2
)i. Hence we have

C(π) =
l

N + 1

N∑
i=0

(
1

2
)i + (

1

2
)NK (B.1)

Thus

C(π) =
2l

N + 1
(1− 2−(N+1)) + 2−NK (B.2)

Then, as K ≤ l, N + 1 ≥ 4l, and l > 1, we have that

114



B.2. Baiting gadgets

C(π) <
2l

4l
+ 2−N l <

3

4
< 1. (B.3)

as required.

Finally we show that for every j ≤ N , C(π) < C(πj), hence the policy πj

is suboptimal. We have that:

C(πj) =
l

N + 1

j−1∑
i=0

(
1

2
)i + (

1

2
)j
�

jl

N + 1
+Mj

�
(B.4)

Thus:

C(πj) =
2l

N + 1
(1− 2−j) +

2−jjl

N + 1
+ 2−jMj (B.5)

Then in order to prove that C(π) < C(πj), we need to prove, from (B.2),

and (B.5), that

2l

N + 1
(1− 2−(N+1)) + 2−NK <

2l

N + 1
(1− 2−j) +

2−jjl

N + 1
+ 2−jMj (B.6)

From Invariant 3.3.2, we have that 1 ≤Mj. Then, as K ≤ l, it is sufficient

to show that for every 0 < j ≤ N :

2l

N + 1
(1− 2−(N+1)) + 2−N l <

2l

N + 1
(1− 2−j) +

2−jjl

N + 1
+ 2−j (B.7)

For this we need to prove

2l

N + 1
(2−j − 2−(N+1) − 2−j−1j) + 2−N l < 2−j

By multiplying both sides by 2j, we need to show that for every 0 < j ≤
N ,

2l

N + 1

�
1− 2j−N−1 − j

2

�
+ 2j−N l < 1

For this, it is sufficient to show that for every 0 < j ≤ N ,
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2l

N + 1

�
1− j

2

�
+ 2j−N l < 1 (B.8)

Finally, inequality (B.8) follows since the function:

f(x) =
2l

N + 1

�
1− x

2

�
+ 2x−N l

over the reals, has only one extremum, and as N + 1 ≥ 4l and l > 1, we

have that f(0) < 1, f(N) < 1 and

lim
x→∞

f(x) = lim
x→−∞

f(x) =∞

2

B.3 Observation gadgets

Let g = OG(u, v, o) be an observation gadget as defined in Section 3.3.2,

and seen in Figure 3.3, appears below as well). Recall that πg is the fol-

lowing partially specified policy for OG(u, v, o): At u, cross BG1 (observe

(v1, v4)). Then cross BG2. If either (v1, v4) or (v2, v3) is found blocked,

reach t by traversing the shortcut edge (v2, t) with cost 3L/2. However, if

both (v1, v4), and (v2, v3) are unblocked, traverse (v2, v3, o, v4, v1, v
′
1) (at o,

observe any edges incident on o), and cross BG3. From v continue with any

optimal policy.

Claim 3.3.5 Assume L > 8. Then, when at u for the first time, under

Invariants 3.3.2 and 3.3.4, πg is an optimal policy for an observation gadget

g = OG(u, v, o).

Proof: First note that by following πg, Invariants 3.3.2 holds for every

baiting gadget in g. At u, as BG1 is a baiting gadget, then by Claim 3.3.3,

it is optimal to cross BG1. When first arriving at v1, after BG1 is crossed,

(v1, v4) is observed. As (o, v4) has a cost of 5L/8 > 1, and (v1, v
′
1) has a cost
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v3

o

0|p10|p10|p1

v1

v2

B
G

2

BG1

v4t

1 1

1

0| 34

0| 34

v′1u vBG3

r2 r3 r4 r5 r′1 r′2

3L
2

the exam section path

5L
8

5L
8

Figure 3.3: An observation gadget OG(u, v, o). Light gray arrows indicate
general traversal direction of the optimal policy π. BG1 and BG3 are baiting
gadgets with a parameter l = L. BG2 is a baiting gadget with a parameter
l = 3L/2.

of 1, then by Claim 3.3.3, it is optimal to cross BG2. Once at v2, if (v2, v3)

is blocked, it is optimal to take the shortcut (v2, t) for a cost of 3L/2.

It remains to show that if (v2, v3) is unblocked, the optimal policy at v2

is:

1. If (v1, v4) is unblocked, traverse (v2, v3, o, v4, v1, v
′
1), cross BG3, and

from v continue with any optimal policy.

2. Otherwise, traverse the shortcut (v2, t) for a cost of 3L/2.

Case 1: (v1, v4) is unblocked.

First note that arriving at v1 a second time through (v4, v1), BG1 and

BG2 are known not to have any unblocked shortcut edges, thus crossing them

costs at least L > 8. Hence by Claim 3.3.3, the optimal policy when arriving

at v1 a second time is to traverse (v1, v
′
1), cross the baiting gadget BG3, and

from v continue with any optimal policy for a total expected cost of less than

2.
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Now, traversing (v2, v3, o, v4, v1, v
′
1), crossing BG3, and continuing with

an optimal policy, bears an expected cost of at most 2(5L/8) + 2, while

traversing (v2, t) costs 3L/2. Hence, as 2(5L/8) + 2 < 3L/2, it is optimal at

v2 to traverse (v2, v3, o) to the vertex o.

We now inspect the possible partially specified policies at o:

Case 1.a: Traverse (o, v4, v1, v
′
1), cross BG3, and from v continue with any

optimal policy, for an expected cost of at most 5L/8 + 2. We denote

this partially specified policy by π′.

Case 1.b: Traverse edges of another observation gadget g̃, if there exists

such g̃ incident on o, and continue with any optimal policy. Suppose

that g̃ has not already been traversed (label the vertices of g̃ as Üvi).
Then traversing either (o, ṽ3) and trying to traverse (ṽ3, ṽ2), or travers-

ing (o, ṽ4) and trying to traverse (ṽ4, ṽ1), results in an expected cost of

at least 5L/8 + 3(5L/8)/4. Hence, as 5L/8 + 2 < 5L/8 + 3(5L/8)/4,

we have that executing π′ is cheaper than traversing any edges of g̃.

Next suppose that g̃ has already been traversed. Therefore we may

assume that the policy πg̃ was executed in Entry(g̃); thus the baiting

gadgets of g̃ are known not to contain any unblocked zero-cost short-

cuts, hence crossing each such baiting gadget costs at least L. Then

traversing g̃ results in an expected cost of at least 5L/8 + L, and as

5L/8 + 2 < 5L/8 +L, we again have that executing π′ is cheaper than

traversing any edges of g̃.

Case 1.c: Traverse the exam section path, if o is connected to this path.

Recall that o is identified with r5. First suppose that the observation

edge (r4, r5) is blocked. At o, denote the following partially specified

policy by π1: cross (r5, r
′
1); if (r′1, r

′
2) is unblocked, continue with any

optimal policy, otherwise, return to o, and execute π′, which can still

be executed, for an expected cost of C(π′) < 5L/8 + 2. Then we have

C(π1) ≥ 1 + p1(1 + C(π′))
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and as p1 > 1− 2/(3L+ 1), we have that

C(π′) < 1 + p1(1 + C(π′)) ≤ C(π1)

Therefore executing π′ is cheaper than executing π1.

Now suppose that (r4, r5) is unblocked. Then we can either execute π1

(or the symmetric case in which (r2, r3) is being inspected) with the

same analysis, or we can extend π1 with the following policy denoted

by π2:

Execute π1; upon returning to o (after (r′1, r
′
2) is found blocked), cross

(r5, r4) and (r4, r3); if (r3, r2) is unblocked, continue with any optimal

policy; otherwise return to r5, and execute π′, which can still be executed

for an expected cost of C(π′) < 5L/8 + 2. Then we have that

C(π2) ≥ 1 + 2p1 + p2
1(1 + C(π′))

However, p1 > 1− 2/(3L+ 1) entails C(π′) < C(π2). Therefore execut-

ing π′ is cheaper than executing π2 as well. The policy in which (r2, r3)

is the first edge among (r2, r3) and (r′1, r
′
2) to be inspected is symmetric

to π2. Hence we see that traversing any edges of the exam section path

is suboptimal.

Case 2: (v1, v4) is blocked.

In this case the following partially specified policies can be executed at

v2:

Case 2.a: Take the shortcut edge (v2, t) for a cost of 3L/2. Denote this

policy by π′.

Case 2.b: Traverse (v2, v3) and (v3, o) for a cost of 5L/8 and at o traverse

edges of another observation gadget. As in Case 1.b we have that

traversing edges of g̃ results in an expected cost of at least 5L/8 +

3(5L/8)/4. Then, as 3L/2 < 5L/8 + 5L/8 + 3(5L/8)/4, we have that

π′ is cheaper than reaching o and traversing any edges of g̃.
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Case 2.c: Traverse (v2, v3) and (v3, o), for cost of 5L/8, and at o traverse

the exam section path. We define π′1 and π′2 as π1, π2 respectively in

Case 1.c, with the one difference that when back at r5, the cost 5L/8

edge (v3, o) is traversed before executing π′.

Then we have that

C(π′1) ≥ 1 + p1(1 + 5L/8 + C(π′))

and

C(π′2) ≥ 1 + 2p1 + p2
1(1 + 5L/8 + C(π′))

Recall that C(π′) = 3L/2. However as p1 > 1 − 2/(3L + 1), we have

that C(π′) < 5L/8 + C(π′1) and C(π′) < 5L/8 + C(π′2). Hence π′ is

cheaper than traversing (v2, v3, o) and then traversing any edges of the

exam section path.

This concludes the proof.

2

B.4 Behavior of reasonable policies

Claim 3.3.6 At r0, any reasonable policy acts as follows:

• If all the edges in the exam section were observed to be unblocked, cross

(r0, r
1
1, · · · , rm+1

4 , t) until reaching t for a cost of 2(m+ 1).

• Otherwise, cross the cost L shortcut edge (r0, t).

Proof: We first note that any deviation from the exam section results in a

cost of at least L. Then note that unless all the edges in the exam section

were observed to be unblocked, any partially specified policy executed at r0

results in a cost of more than L; therefore it is cheaper to take the shortcut

(r0, t) for a cost of L.
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Retracing BG(zq, z0) clearly results in a cost of at least L. At every

vertex rli, l ≤ m + 1, , i ≤ 5, any unblocked edge on the exam section path,

incident on rli, can be traversed. At rl2 there is an additional option to cross

either BG(zl+1, zl) or BG(zl, zl−1), which hold no unblocked shortcut edges;

hence crossing these results in a cost of at least L. If rl5 is identified with an

observation point of some observation gadget g̃, there is an additional option

to traverse edges of g̃. However, by an argument identical to Case 1.b of the

proof of Claim 3.3.5, traversing any edges of g̃ results in a cost of at least L.

Hence any deviation from the exam section path results in a cost of at least

L.

Now, suppose that all the edges of the exam section are known to be

unblocked. Then, as the exam section contains 2(m + 1) always traversable

cost 1 edges, and as 2(m + 1) < L, the optimal policy is to cross the exam

section (r0, r
1
1, · · · , t) for the cost of 2(m+ 1).

Otherwise, suppose there are edges in the exam section with unknown

status. Let e be the first unknown clause edge in a sense that that every

edge in the path from r0 to e is known to be unblocked. Finding e blocked

results in either retracing the exam section to r0 and taking the cost L short-

cut to t, or in deviating from the exam section for a cost of at least L. Hence,

as (r0, r1) is an unblocked cost 1 edge, traversing the path from r0 to e results

in an expected cost of at least 1+p1L. And as L > 1 and p1 > 1−2/(3L+1),

we have that 1+p1L > L. Therefore traversing the shortcut edge (r0, t) for a

cost L is cheaper. Obviously, the same argument holds when e is previously

known to be blocked.

2
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Appendix C

Lemma 4.1.2 Let I = (V,E, s, t, p, w), and I ′ = (V,E, s, t, p′, w) be a CTP

instance such that p′ ≤ p. Let π∗, π′∗ be optimal policies for I, I ′ respectively.

Then C(π′∗) ≤ C(π∗).

Proof: We show that if p′(e) < p(e) for some e ∈ E, and p′(e1) = p(e1) for

every e1 6= e, then C(π′∗) ≤ C(π∗).

As both I and I ′ have the same graph layout (V,E), the belief states

of BI and of BI′ have the same variables-status representation. Therefore

we can define the bijection f : BI′ → BI , as in Lemma 4.1.1, in which

Loc(b) = Loc(f(b)), and b|e′ = f(b)|e′, for every b ∈ BI and e′ ∈ E. In

addition let ge : BI → BI be the following function. For every belief state

b ∈ BI :

• Loc(ge(b)) = Loc(b)

• ge(b)|e′ = b|e′ for every e′ 6= e

• ge(b)|e = b|e if b|e = unknown

• ge(b)|e = blocked if b|e = unblocked

• ge(b)|e = unblocked if b|e = blocked.

We say that e is revealed in a transition from a belief state b′ to a belief

state b in a policy π if b = b′oπ(b′) for some observation o, and if the status of

e is unknown in b′ and is known in b. We say that e is revealed in a belief

state b if there is a belief state b′ such that e is revealed from b′ to b in π.
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Note that every two distinct belief states b1, b2, in which e is revealed, are

separated.

Next, we construct a stochastic policy π′1 for I ′ such that in some cases,

when e is revealed unblocked in a belief state reached in π1, then π′1 acts as

if e is still blocked. Then we show that C(π′1) = C(π∗). As π′∗ is an optimal

policy for I ′, then C(π′∗) ≤ C(π′1), which concludes the proof.

We now construct π′1. For every belief state b ∈ I ′ in which e is revealed

to be unblocked we do as follows. Let

x =
p(e)− p′(e)

1− p′(e)
With probability x, for every belief state b′ reachable from b in π∗, let

π′1(b′) = π∗(ge(f(b′))); and with probability 1−x, for every b′ reachable from

b in π∗ let π′1(b′) = π∗(f(b′)). Finally, let π′1(b′) = π∗(f(b′)) for all other belief

states.

Now assume that e is revealed from belief state b′ ∈ BI to a belief state

b. As b′ itself is not reachable from a belief state in which e is revealed, we

have π′1(b′) = π∗(f(b′)). Let z, z′ be OR-nodes in Tπ∗ , Tπ′1 , respectively, such

that LTπ′
1

(z′) = b, and LTπ∗ (z) = f(b). We show that V π′1(z′) = V π∗(z).

Note that if b1 ∈ BI is separated from b, then for every nodes u′ ∈ Tπ′1 with

L(u′) = b1, and u ∈ Tπ∗ with L(u) = f(b1), we have V π′1(u′) = V π∗(u).

Therefore, by using the same inductive method as in Claim 2.3.1, we have

that V π′1(k′) = V π∗(k) for every node k′ ancestor of z′, and node k ancestor

of z, thus the proof is complete.

To see that V π′1(z′) = V π∗(z), denote the action π′1(b′) by a (where a

is the action Move(e1) for some edge e1). Denote the set of observations

received when performing a in b′ by O′. Denote the grandchild of z for which

L(zoa) = boa by zoa. Then,

V π∗(z) = w(e1) +
∑
o∈O′

(p(b′|a, o)V π′(zoa))

Note that as e is revealed by b′ in π, then in any observation o ∈ O′,

e is revealed to be either blocked or unblocked in b′oa. Therefore we divide
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O into O1: the observations in which e is revealed blocked, and O′2: the

observations in which e is revealed to be unblocked. Note that there is a

bijection h : O′1 → O′2 such that for every edge e′ 6= e, the status of e′ in o

and h(o) is identical. Let B(O′1) = {b′oa|o ∈ O1}, and B(O′2) = {b′oa|o ∈ O2}.
Hence for every o ∈ O1, we have ge(b

′o
a) = b′h(o)

a .

Therefore for every b ∈ B(O′1), such that b = b′oa , and p(b′|a, o) = q(o)p(e)

for some probability q(o), we have p(ge(b)|a, h(o)) = q(o)(1− p(e)). Then we

can write

V π∗(z) = w(e1) +
∑
o∈O′1

(q(o)p(e)V π′(zoa)) +
∑
o∈O′2

(q(o)(1− p(e))V π′(zoa))

To calculate V π′1(z′) we repeat the same analysis. As π′1(f(b′)) = a as well,

we have that after performing a in f(b′), the same set of observations O′1 is

received. Since p(e1) = p′(e1) for every e1 6= e, then p(f(b′)|a, o) = q(o)p′(e)

for every o ∈ O′1, where p(b′|a, o) = q(o)p(e). Therefore we have

V π′1(z′) = w((u, v))+x
∑
o∈O′1

(q(o)p′(e)V π′(z′oa ))+(1−x)
∑
o∈O′2

(q(o)(1−p′(e))V π′(z′oa ))

However, as xp′(e) = p(e), and (1− x)(1− p′(e)) = 1− p(e), we have

V π′1(z′) = V π∗(z) as required.

2
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Appendix D

D.1 Policy simulation

We give a formal definition of policy simulation as informally defined in

Section 4.2.1.

Let M be a Det-POMTP with a set of actions A, and let M ′ be a Det-

POMDP with a set of actions A′. Let g : A→ A′ and h : BM → BM ′ be two

functions, and let Bin
M , B

out
M ⊆ BM be two sets of belief states in BM . Let π

be a policy for M . Then a policy π′ for M ′ is an (h, g, Bin
M , B

out
M )-simulation

of a policy π for M , if we have g(π(b)) = π′(h(b)) for every belief state b

between Bin
M and Bout

M (see Figure 3.3). Throughout this work, the set of

actions of M and the set of actions of M ′ are the same, and g is the identity

function (see Figure 3.3). When h, g, Bin
M , B

out
M are obvious from the context,

we say π′ is a simulation of π, and π simulates π′.

Now, let I = (V,E, s, t, p, w) be a CTP instance, and let I ′ = (G′, s′, t′),

where G′ = (V ′, E ′), be a CTP sub-instance of I. For a belief state b ∈ BI ,

such that Loc(b) ∈ V ′, we denote by b � E ′, the belief state b′ ∈ BI′ in which

Loc(b) = Loc(b′) and b|e = b′|e for every edge e ∈ E ′. Let h be a partial

function from BI to BI′ , defined in all belief states b with Loc(b) ∈ V ′,

such that h(b) = b � E ′. Note that h is onto. Let id be the identity

function over the set of actions {move(e)|e ∈ E ′}. Let FI,I′ be a func-

tion from the set of I ′-committing policies for I, to the set of policies for

I ′, such that FI,I′(π) is the
�
h, id, Bin(G′, π), Bout(G′, π)

�
-simulation of π.

Note that as I ′ is a sub-instance of I, then FI,I′ is onto, and that if π′ is a
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BM BM ′

A A′

h

g

π π′

Figure 3.3: Policy simulation where g is a general function from A to A′.

BM BM ′

A

h

π π′

Figure 3.3: Policy simulation where A and A′ are identical and g is the
identity function.

�
h, id, Bin(G′, π), Bout(G′, π)

�
-simulation of π, then C(trunc(πb, B

out
b (G′, π))) =

C(π′). π′ is then called the contraction of π to I.

D.2 The sub-graph exclusive lemma

Let G = (V,E) be a graph and let G′ = (V ′, E ′) be a subgraph of G′. Let E ′-

exclusive be the following constraint: ”the edges of E ′ cannot be traversed”.

Let M = (G, s, t, p, w) and M̃ = (G, s, t, p̃, w) be E ′-exclusive CTP instances

such that p(e) = p̃(e). Then we have the following lemma .
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Lemma D.2.1 Let π∗ be an optimal E ′-exclusive policy for M , and let π̃∗

be an optimal E ′-exclusive policy for M̃ . Then C(π∗) = C(π̃∗).

Proof: If the edges of E ′ cannot be traversed in M or in M̃ , they might as

well be blocked. Therefore if M̃ = (G, s, t, p̄, w) is a CTP instance such that

p̃(e) = p(e′) for every e ∈ E\E ′, and p̄(e) = 1 for every edge e ∈ E ′, then

we have that C(π∗) = C(χ∗) where χ∗ is an optimal policy for M̃ . For the

same argument we have that C(π̃∗) = C(χ∗). Therefore C(π∗) = C(π̃∗) as

required.

2

D.3 Generalization of the partition framework

We generalize the partition framework to subgraphs with mutual vertices.

Let U(G) ⊆ V be the set of all vertices in V that are explored in b0. Let

I ′ = (G′, s′, t′) be a sub-instance of I where G′ is connected to the rest of

the graph only through s′, t′ and vertices of U(G). In order to define I ′-

committing policy, we need to re-define the entry-point and the departure-

point of G′.

An explored edge in a belief state b is an edge that is known in b.

A meaningful tour in G′ can be either of the following

• a sequence of moves in G′ along explored edges in b0, which starts at

s′ and ends in t′.

• a conditional sequence of move actions, all in G′, in which a status of

an edge in E ′ is revealed with probability 1.

We say that an OR-node z ∈ Tπ, where L(z) = b, is an entry point (in Tπ)

of G′, if π(b) is the first action in a meaningful tour in G′, and either b = b0

or PrevActionπ(z) is outside G′. We say an AND-node z, with L(z) = b, is

a departure point of G′ (in Tπ), if PrevActionπ(b) is an action in a revealing

tour in G′, a single observation is received at b, and NextActionπ(b) is outside

G′.
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Definition D.3.1 A policy π is I ′-committing (or (G′, s′, t′)-committing) if

the following hold:

• the only entry points of G′ in Tπ are of Zin(G′, π).

• the only departure points z of G′ in Tπ are of Zout(G′, π).

• any move actions in G′ at any belief state reachable from Zout(G′, π)

are along explored edges.

See that Lemma 4.2.2 still holds for this generalization.

Now let (G1, s
′, t′), (G2, s

′, t′) be sub-graphs where each Gi is connected

to the rest of the graph through s′, t′ and vertices of U(G). Therefore we

still have that when traversing G1, no edges of G2 are revealed; and when

traversing G2, no edges of G1 are revealed. Hence Lemma 4.2.3 still holds as

well.

Finally, we define the following generalization of a CTP partition.

Definition D.3.2 A CTP instance I = (V,E, s, t, p, w) (where G = (V,E))

is a partition of CTP-instances ((G1, s
′, t), · · · (Gk, s

′, t)) of M , where Gi =

(V i, Ei) if:

• ⋃
i<k V

i = V and
⋃
i≤k Ei = E.

• V i ∩ V j ⊆ (U(G) ∪ {s′, t})

I is called a {G1, · · · , Gk}-CTP partition .

Then Corollary 4.2.6 still holds for this generalization as well.
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Appendix E

Lemma E.0.3 Let T be a tree. Then PT , the probability that T is blocked,

can be recursively found in polynomial time.

Proof: Let r be the root of T . If l is a leaf then p(l, t) = 0. Let u1, · · ·ul
be the children of a vertex u then

PT (u) =
∏
i≤l
P (T Par(ui)) (E.1)

where for every i ≤ l

PTPar(ui) = p((u, ui)) + (1− p((u, ui)))PT (ui) (E.2)

Therefore PT , which is the same as PT (r) can be found in polynomial time.

2

Lemma E.0.4 DPar(v′) < DT ′

Proof: Let T 1 be a CTP-Tree obtained from T as follows. For every edge

e that is not contained in a subtree T Par(u′), where u′ is of height h− 1, the

cost of e in T 1 is reduced to 0. As T and T 1 have the same graph layout, the

belief states of BT and BT 1 have the same variables-status representation.

Therefore for every belief state b ∈ BT , there is a unique belief state b1 ∈ BT 1

such that b1 has the same status-variables representation as b (see Section

2.4 for exact definition of the status-variables representation). Therefore πb
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can be executed in BT 1 as well, and specifically Travel(T ′1), for the analogue

subgraph T ′1 of T 1, can be performed in b1.

LetX be the random variable that describes the expected cost of Travel(T ′1)

performed in b1 . Then CT ′1 = E[X]. Let u0
1, · · ·u0

z0
be the vertices of T ′1 of

height h− 1, in which (Parent(u0
i ), u

0
i ) is known in b1 to be unblocked, and

let X0
i be the random variable that describes the cost of traversing T Par(u0

i )

(as a part of the macro action Travel(T ′1)). Likewise, let u1
1, · · ·u1

z1
be the

vertices of T ′1 of height h− 1, in which (Parent(u1
i ), u

1
i ) is not known in b1

to be unblocked , and let X1
i be the random variable that describes the cost

of traversing T Par(u1
i ) (again, as a part of the macro action Travel(T ′1)). As

the only edges of cost greater than 0 are in edges of the T Par(uki ), we have that

X =
∑
i<z0 X

0
i +

∑
i<z1 X

1
i , and therefore E[X] =

∑
i<z0 E[X0

i ]+
∑
i<z1 E[X1

i ].

For k ∈ {0, 1}, denote byQk
i the probability that T Par(uki ) is entered. As uki is

of height h−1, then by the induction assumption, πb is T Par(uki )-committing,

and therefore E[Xk
i ] = Qk

iC(T Par(uki )). However, as for every k ∈ {0, 1}, all

the T Par(uki ) are identical, we have that C(T Par(uki )) = C(T Par(uk1)), and

PTPar(uki ) = PTPar(uk1) for every i ≤ zk.

Therefore we have

CT ′1 =
∑
i<z0

Q0
iC(T Par(u0

1)) +
∑
i<z1

Q1
iC(T Par(u1

1))

Now, as the probability that t is reached through a leaf of T Par(uki ),

assuming T Par(uk) is entered, is 1− PTPar(uk1), we have that

1− P T ′1 =
∑
i<z0

Q0
i (1− PTPar(u01)) +

∑
i<z1

Q1
i (1− PTPar(u11))

and as
C(TPar(u01))

1−P
TPar(u0

1
)

=
C(TPar(u11))

1−P
TPar(u1

1
)

= DPar(v′), we have that

DT ′1 =
CT ′1

1− P T ′1
=

∑
i<z0 Q

0
iC(T Par(u0

1)) +
∑
i<z1 Q

1
iC(T Par(u1

1))∑
i<z0 Q

0
i (1− PTPar(u01) +

∑
i<z1 Q

1
i (1− PTPar(u11)

= DPar(v′)

(E.3)

Now, as in T we have w((Parent(v), v)) > 0, then we have CT ′1 < CT ′ .

As P T ′ = P T ′1 , we have that DT ′1 < DT ′ , meaning DPar(v′) < DT ′ , as re-
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2

Lemma E.0.5 For a vertex v ∈ T that is not the root, denote by Q0
TPar(v) the

probability that T Par(v) is unblocked given (Parent(v), v) is unblocked. De-

note by C0(T Par(v)) the expected cost of TRY (T Par(v)) given (Parent(v), v)

is unblocked. Let D0(T Par(v)) = C0(TPar(v))
Q0
TPar(v)

. Then

D0(T Par(v)) = D(T Par(v))

Proof: Follows straight from the definitions. As

C0(T Par(v)) = w((Parent(v), v)) + C(T (v)) + PT (v)w((Parent(v), v))

and

Q0
TPar(v) = 1− PT (v)

and we have

C(T Par(v)) = (1− p((Parent(v), v)))C0(T Par(v))

and

PTPar(v) = (1− p((Parent(v), v)))PT (v)

2
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Table of Notations

Symbol Page

Ev the edges incident on v 5

Parent(v) the parent of v 5

�T partial order on the tree T 6

depth(v) depth of vertex v 6

height(v) height of vertex v 6

Depth(T ) the depth of T 6

Height(T ) the height of T 6

Rank(v) the rank of T 6

T (v) the subtree of T with root v 6

T Par(v) T (v) with Parent(v), and (Parent(v), v) 6

� restriction of a function 6

T (s, a, s′) transition function 8

R(s, a, s′) reward function 8

V π(s) value of π at state s 10

C(π) the cost of π 10

O(s, a, o) observation function 10

b0 the initial belief states 11

BM the set of belief states in M 11

p(o|a, b) 11

boa 11

ba 12

sup(b) the set of states i in which b(i) > 0 13

Ab actions available at belief state b 13

BM(b) belief states reachable from b 13

BM(b, π) belief states reachable in π from b 13

VAND AND vertices 13

VOR OR vertices 13

EOR OR arcs 13

EAND AND arcs 14

L a label function from nodes in T to belief states 14
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trunc(πb, B) a partial truncated policy 52

w(e) cost of edge e 6

p(e) probability of e to be blocked 6

q(e) probability of e to be unblocked 6

Ye edge status function 16

loc vertices location function 16

Loc(b) location at belief state b 17

B|e status of edge e in belief state b 18

Nex(b) explored neighborhood of b 21

∂(b) the fringe of b 21

Traverse(v) macro action Traverse 21

Wi,j cost of path Ii until the j’th edge 23

TRY (i) macro-action TRY for a path Ii 24

INV (i, j) macro-action INV for a path Ii and an edge ei,j 24

Qi the probability that Ii is unblocked 23

BC(i) backtracking cost of Ii 24

U(G) all vertices v with Ev unblocked 129

PrevActionπ previous action in π 50

NextActionπ next action in π 50

Zin(G′, π) 50

Zsucc(G′, π) 50

Zfail(G′, π) 50

Zout(G′, π) 50

Bin(G′, π) 50

Bsucc(G′, π) 50

Bfail(G′, π) 50

Bout(G′, π) 50

Bout
b (G′, π) 51

TRY (I ′) macro action TRY for a sub-instance I ′ 55

Travel(T ) macro action Travel 73

TRYn macro action TRY for n agents 87
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action arcs, 14

actions, 8

ancestor, 5

And-arcs, 14

AND-nodes, 13

approximation ratio, 80

arcs, 13

baiting gadget, 32

balanced tree, 6

belief state, 11

belief-state MDP, 11

between, belief states, 52

blocked edge, 16

blocked, edge, 48

Canadian Traveler Problem, CTP, 6

child, 5

chosen, vertex, 64

committing policy, 52

committing ratio, 80

committing, CTP-DISJ, 24

committing-vertex, 61

constrained policy, 47

constrained-CTP, 47

contraction, 52, 130

cost function, 9

CTP decision problem, 8

CTP-Dep, 28

cut, tree, 6

departure point, 50, 131

dependent CTP (CTP-Dep), 28

depth, vertex, 6

descendant, 5

Deterministic POMDP (Det-POMDP),

12

EFC-CTP-Tree, 71

entry point, 50, 131

environment history, 9

exploration-vertex, 61

explored edge, 131

explored vertex, 21

explored-neighborhood, 21

factored cost, 55

factored-cost gap, 81

finite horizon, 9

first departure point, 50

first entry, 50

free edge, 59

fringe, 21

goal state, 16
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Index

grandchild, 5

grandparent, 5

height, vertex, 6

horizon, 9

Identical-CTP-Tree, 71

incoming edge, 6

indefinite horizon, 9

infinite horizon, 9

inside, action, 48

intermediate belief state, 12

intermediate vertex, 6

leaf, 6

macro action, 20

Markov Decision Process, 8

Markovian transitions, 8

maximal cut, 6

meaningful tour, 131

nodes, 13

NoExpTreeSolver, algorithm, 62

observation, 10

observation arcs, 14

observation gadget, 34

OneExpTreeSolver, algorithm, 70

optimal cost, 9

optimal policy, 9

OR-arcs, 14

OR-nodes, 13

outgoing edge, 6

outside, action, 48

parent, vertex, 5

Partially Observable Markov Decision

Process (POMDP), 10

partition, CTP, 56, 132

policy, 8

policy simulation, 129

policy, partial, 15

policy, switching, 55

reachable, 5

reachable, belief state, 13

Repeated-CTP, 87

Reset-CTP, 109

restriction, 6

revealed, edge, 47, 125

reward function, 8

root, tree, 5

separated, belief states, 13

siblings, 5

size, tree, 6

splitting vertex, 5

states, 8

stochastic policy, 46

succeeds, committing policies, 55

support, 13

terminal belief state, 17

terminal free edges, 59

terminal states, 9

transition function, 8

tree, 5

trunk, 5

unblocked edge, 16
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underlying MDP, 10

variables-status representation, 20

Weighted AND/OR tree, 13
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, בו הסוכן אילוץ החיוב לקודקודהינו מושתת על עץ. אנו מציגים את הבעיה], גרף6במסלולים [
עץ ששורשו הוא קודקוד זה. באמצעות סכימת החלוקה אנו מציגים -"מחויב" לחקור בשלמות תת

ב לכל קודקוד בגרף, וכן פתרון אופטימלי יעיל לבעיה פתרון אופטימלי יעיל לבעיה בה הסוכן מחוי
בה הסוכן מחויב לכל קודקוד, מלבד לאחד שצלעותיו היוצאות הינן ידועות. בנוסף לכך אנו 

-שווילעציםהקנדיהנוסעבעייתהקרויCTP-Treeמציגים פתרון אופטימלי יעיל לווריאנט של
ל לכל תתי העצים באותו גובה הינו המשוקל-בו המחיר,)EFC-CTP-Tree(משוקלל-מחיר
באיזו מידה פתרון זה מהווה קירוב לפתרון אופטימלי . לאחר מכן, אנו בודקים אמפירית שווה

לבעיית הנוסע הקנדי לעצים.

אמיתיות מדובר ביותר מסוכן אחד, אנו מציגים וריאנט של בעיית לבסוף, מאחר ובהרבה בעיות 

. בווריאנט זה ישנם מספר סוכנים, וכל סוכן )Repeated-CTP(הנוסע הקנדי עם מספר נוסעים
מתחיל לנוע רק לאחר שקודמו הגיע למטרה. לדוגמה, בעל צי של משאיות השולח מספר משאיות, 
אחת אחרי השניה, אל המטרה. בעל הצי מעוניין למקסם את המחיר כולו, במקום שכל משאית 

נותנים פתרון אופטימלי יעיל לבעיה זו על בנפרד תמקסם את המחיר עבור עצמה. בעבודה זו אנו

].7עבודה זו פורסמה ב [.)disjoint-path graphs(גרפים זרים במסלולים

וודאות, בעיית מציאת המסלול האקראי הקצר -בעיית הנוסע הקנדי, ניווט תחת אימילות מפתח:
כולל חזרה.-ביותר





תקציר

בעיות חיפוש הן חלק מקבוצת הבעיות הבסיסיות הנחקרות במדעי המחשב בכלל, ובבינה 
מלאכותית בפרט. עם זאת, פתרונות לרוב בעיות החיפוש הקלאסיות אינן ישימות בעולם האמיתי. 

לנבחן לדוגמה את בעיית הניווט הבאה, הנגזרת מן העולם האמיתי. ייתכן כי מתכנן המסלו

)Planner ( יכיר את מפת האזור ואת עלות השימוש בכבישים, בין אם העלות מוגדרת כאורך
הכביש או כזמן הנדרש לעבור בו; ובכל זאת, בידי המתכנן מידע חלקי בלבד הנוגע למצב הכבישים 
הנוכחי, שכן אין באפשרותו לדעת אם כביש מסוים פתוח או חסום, עד אשר הגיע לנקודות ציון 

ת לכביש. מכאן נוכל להסיק כי אלגוריתמים שייעודם מציאת המסלול הקצר ביותר בגרף, הסמוכו
יעילים למציאת מסלול מועדף. הבעיה שהמתכנן יהיה מעוניין בפתרונה היא -ייתכן ויימצאו כבלתי

מציאת תוכנית מעבר מנקודת מקור לנקודת יעד, שתוחלת עלותה מינימלית.

היא מודל טבעי לבעיה זו: בהינתן )The Canadian Traveler Problem(בעיית הנוסע הקנדי

באמצעות מעבר בחלק מקשתות tעל הסוכן להגיע לנקודת היעד, sוסוכן המוצב בקודקודGגרף
הגרף. בידי הסוכן מידע מלא על מבנה הגרף ומחיר הקשתות, אולם ייתכן כי חלק מן הקשתות 

אש. הסוכן מגלה כי קשת חסומה רק כאשר הוא חסומות, כל אחת בהסתברות מסוימת נתונה מר
מגיע לקדקוד הסמוך לאותה הקשת. הבעיה בפניה אנו עומדים היא מציאת אסטרטגיה שתשמש 

במינימום תוחלת המחיר אותו יידרש לשלם. , tלsאת הסוכן עבור חישוב מסלול מ

נטים שונים שלה. מחקר זה מנתח היבטים תאורטיים של בעיית הנוסע הקנדי, וכן מנתח וריא

Partially Observable(מידול הבעיה כתהליך החלטה מארקובי הניתן לצפייה חלקית
Markov Decision Process(  מקנה לנו את היכולת לאפיין ולנתח בצורה מדויקת

ידי כך לתכנן אסטרטגיות אופטימליות הפותרות את -אסטרטגיות שונות לפתרון הבעיה ועל
הבעיה. 

]. בגרסה זו נמצאה הבעיה כ31בעיית הנוסע הקנדי הוגדרה לראשונה כבעיית משחק מול יריב [

PSPACE-כשייכת 31ידי  [-שלמה. הגרסה האקראית, אותה אנו סוקרים בעבודה זו, נמצאה על [

קשה. בעבודה זו אנו סוגרים את פער הסיבוכיות שנוצר, ומראים שגם -#P, אך רק כPSPACEל

שלמה: תחילה עבור גרסה מסוימת של בעיית הנוסע הקנדי, -PSPACEאית הינההגרסה האקר

ולאחר מכן, עבור הבעיה המקורית. תוצאה זו, שפורסמה ,)CTP-Dep(המתירה תלות בין צלעות
], פותרת בעיה שהייתה פתוחה במשך כשני דורות.14ב [

בעיות, ומציאת פתרון -לתתיגישה ידועה לפתרון בעיה מסוימת במדעי המחשב היא פירוק הבעיה 
בעיה. בעבודה זו אנו אכן מציעים -ידי מציאת פתרון אופטימלי לכל תת-אופטימלי לבעיה כולה על

בעיות שונות. מאחר ולגרף כללי, פתרון אופטימלי לתת בעיה של -פירוק לבעיית הנוסע הקנדי לתתי
, אנו מציגים תנאים, או לא בהכרח ייתן פתרון אופטימלי לבעיה כולה, בעיית הנוסע הקנדי

ידי הגדרת וריאנט בו כל פתרון הינו "מחויב" -אילוצים מסוימים בהם נקבל את מבוקשנו. זאת על
-המחירבעיה מסוימת על מנת לפתור את הבעיה הכללית. באמצעות שיטה זו והגדרת -לפתור תת
יעילה) לחלק את המציעה דרך (לא תמיד סכימת החלוקהשל תת בעיה, אנו מציגים את המשוקלל 

בעיה ניתן יהיה לפתור -בעיית הנוסע הקנדי לתתי בעיות, כך שבאמצעות פתרון אופטימלי לכל תת
בצורה אופטימלית וביעילות את הבעיה בכללותה.

וריאנט נוסף של בעיית הנוסע הקנדי, אותו אנו מציגים בעבודה זו, הינו בעיית הנוסע הקנדי לעצים

)CTP-Tree(המהווה הכללה של בעיית הנוסע הקנדי לגרפים זרים. בווריאנט זה ,-
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