
C311 – Program 1: Syntax, Parsing, Abstract

Syntax

Corky Cartwright

Produced: August 18, 2004— Due: 12:00 noon, Wednesday,
September 8, 2004

Overview

Preparation: We suggest that you run the OwlNet register command
for comp311, which will make the latest versions of drscheme and drjava
available as commands in your OwlNet environment.

For more information about DrScheme, read the documentation in

http://www.drscheme.org/tour/ http://www.drscheme.org/tour/

and the DrScheme Help menu. You can download DrScheme Version 205
from drscheme.org.http://drscheme.org DrScheme supports a variety of
different Scheme dialects. For this class, please use the ”Pretty Big” dialect
of Scheme under Professional Languages.

DrJava is distributed as a Java .jar file at the web site drjava.org.
http://drjava.org You can run DrJava on a Unix system (with Java JDK
1.4 installed) by typing

java -jar drjava.jar

assuming that drjava.jar is located in the current directory. On Windows
machines (with Java JDK 1.4 installed), you can run the drjava.jar file
simply by clicking on the icon. Documentation for DrJava is available at
drjava.info. http://drjava.org In addition, if you have questions about
DrJava, send email to

javaplt@rice.edu. mailto:javaplt@rice.edu

Documentation on the JSR14 extension of Java is available at

1

www.cis.unisa.edu.au/~pizza/gj/

We strongly recommend following the documentation link and reading the
GJ Tutorial. The download site for JSR14 is

developer.java.sun.com.

This site requires registration. Follow the link listed under the heading
¡B¿Early Access Downloads¡/B¿.

A good article on the use of Generic Java in conjunction with unit testing
is available the IBM DeveloperWorks website:

www-106.ibm.com/developerworks/java/library/j-diag0625.html?dwzone=java

Every student should create a comp311 directory in his or her home directory.
Each programming team should submit their solution under the userid one
team member. We recommend creating a a programs/1 directory within
the directory comp311. All of your files for this assignment should be stored
in the programs/1 subdirectory.

TeamWork: You are strongly encouraged to do this assignment and all
other assignments in this course in teams of two. When you submit your
assignment, indicate the composition of your team (names, student id’s,
and email addresses) and to what extent you followed the pair-programming
model in your README file.

If you cannot find a partner and would like one, send James Sasitorn
(camus@rice.edu) email and he will try to find one for you. Teams of more
than two members are not permitted.

Testing: You are expected to write unit tests for all of your non-trivial
methods or functions, depending on whether you write your assignments in
Java or Scheme. DrJava provides integrated support for JUnit which makes
this task easy. DrScheme Version 205 supports a similar unit testing system
for Scheme called (surprise!) SchemeUnit. It is available for download from

http://sourceforge.net/projects/schematics/

under the name schemeunit in the list of file releases. The downloadable file
is a ”plt” file that you open using DrScheme. When you open it, DrScheme
adds the library to the collection of libraries maintained by DrScheme. Doc-
umentation for SchemeUnit is available at

2

http://schematics.sourceforge.net/schemeunit/schemeunit.html

Chapter 2 entitled ”Quick Start” (a single page!) provides enough informa-
tion to write unit tests for this assignment.

Note that unit testing conflicts in some cases with the name hiding rec-
ommendations given for writing Scheme code in Comp 210 because lexically
nested function definitions cannot be tested. In your Scheme programs all
non-trivial functions must be accessible at the top-level.

Task: Your task is to write a parser in Generic Java or Scheme that rec-
ognizes expressions in the illustrative language Jam, which will be defined
subsequently. The course staff has provided lexers in both Scheme and Java
for this assignment. These lexers return a larger set of symbols than what
appears in the Jam definition. These extra symbols anticipate future exten-
sions to Jam. At this point, your parser should simply reject any program
containing one of these extra symbols as ill-formed, just like it would for any
other syntax error.

Scheme Version:
In Scheme, the parser’s input language is a stream of tokens implemented

as a parameterless “read” procedure p that encodes a token stream. Given
the procedure p, the application (p) returns the next token in the encoded
stream, which is either a Scheme symbol, a Scheme integer, or a special
end-of-file object that is recognized by the predicate eof-object?.

The Scheme library file lexer.ss implements a scanner (lexical ana-
lyzer) that converts either a file or a string to a corresponding token stream.
Given a string s specifying a file name, the application (make-file-lexer

s) returns the corresponding token stream. Given a string s consisting of
program text, the application (make-string-lexer s) returns the corre-
sponding token stream.

The parser’s output language is Jam abstract syntax, which is defined
in the library file abs.ss. If the parser determines that some given input
does not represent a legal Jam program, it should print an appropriate error
message and terminate the parsing process. In Java, you can abort the
computation by throwing a ParseException for which there is no catch

handler.
Note that lexer.ss and abs.ss are Teachpack (library) files and should

be loaded into DrScheme using the AddTeachpack command on the Language
menu. You can load both libraries into DrScheme as a single TeachPack li-
brary by placing both library files in your program directory and designating

3

the file lexer.ss as the TeachPack to be loaded. The module lexer.ss re-
quires the module abs.ss, which forces it to be loaded. These library files
are available on the web in the directory

www.cs.rice.edu/\~javaplt/311/Assignments/1/scheme.

Your parser should be expressed as a function parse that takes a string
specifying a file name as its only argument and returns an abstract syntax
tree for the Jam expression in the specified file. Your Scheme program should
be stored in the file parser.ss, which will be recognized by the turnin311

command and our grading program.

Java (GJ) Version:
In Java, the parser’s input token stream is provided by a Lexer ob-

ject supporting the parameterless method readToken(). The readToken()

method produces a stream of Token objects belonging to various subclasses
of the Token interface. The Lexer class supports two constructors: a
zero-ary constructor that converts standard input to a Lexer and a unary
constructor Lexer(String fileName) that converts the specified file to a
Lexer. The file lexer.java contains the definition of the Lexer class and
the collection of classes representing tokens (the Java interface Token) and
abstract syntax trees (the java interface AST).

Your parser should be expressed as a class Parser with constructors
Parser(Reader stream) and Parser(String filename) which create parsers
reading the specified stream or file. The provided Lexer class includes two
similar constructors Lexer(Reader stream) and Lexer(String filename).
The Reader form of these constructors is very convenient when you are
testing your parser from the DrJava read-eval-print loop or from unit test
methods.

The Parser class should contain a public method AST parse() that
returns the abstract syntax tree for the Jam expression in the input stream.
Our grading program will print the output using the method System.out.println,
which invokes the toString method on its argument. All of the requisite
abstract syntax classes including toString methods are defined in the file
lexer.java. This library files are available on the web in the directory

www.cs.rice.edu/~javaplt/311/Assignments/1/java.

If your parser encounters an erroneous input, simply print an explanation
of the syntax error and abort parsing the file (using the error primitive

4

Scheme and the throwing of a ParseException in Java. Recovering from
a syntax error to continue parsing is a complex problem with many special
cases. It is not a realistic goal for this assignment.

Choice of Language: Generic Java and Scheme are the only languages
permitted for this assignment.

Input Language Specification:

The following paragraphs define the parser’s input language and the subset
that your parser is supposed to recognize a legal Jam program.

The Input Language The parser’s input language is <input> where:

%% A phrase P enclosed in braces { P } is optional

%% A phrase P followed by a * is iterated zero or more times, e.g. <def>+ means

%% the concatenation of zero or more <def> phrases

%% A phrase P followed by a + is iterated one or more times, e.g. <def>+ means

%% the concatenation of one or more <def> phrases

%% If a phrase P enclosed in brackets { P } is followed by a * or +, the braces are

%% simply denote grouping: the enclosed phrase is iterated as specified by the

%% * or + symbol

<input> ::= <token>*

<token> ::= <alpha/other> <alpha/other/numeric>* | <delimiter> | <operator>

%% Adjacent tokens must be separated by whitespace (a non-empty sequence of

%% spaces, tabs, and newlines) unless one of the tokens is a delimiter or

%% operator.

%% In identifying operators, the lexer chooses the longest possible match.

%% Hence, "<=" is %% interpreted as a single token rather than "<" followed by "="

<alpha/other/numeric> ::= <alpha/other> | <digit>

<alpha/other> ::= <lower> | <upper> | <other>

<lower> ::= a | b | c | d | ... | z

<upper> ::= A | B | C | D | ... | Z

<other> ::= ? | _

5

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<delimiter> ::= (|) | [|] | , | ; |

%% In subsequent assignments, "{" and "}" will be added to this list

<operator> ::= "+" | - | ~ | "*" | / | = | != | < | > | <= | >= | & |

"|" | :=

%% The operators "ref", "<-", and "!" will be added in subsequent assignments,

%% but they do not exist in Assignment 1

Jam The set of legitimate Jam phrases is the subset of the potential inputs
consisting the expressions <exp> defined by the following grammar:

%% Expressions:

<exp> ::= <term> { <binop> <exp> }

| if <exp> then <exp> else <exp>

| let <def>+ in <exp>

| map <id-list> to <exp>

<term> ::= <unop> <term>

| <factor> { (<exp-list>) }

| <null>

| <int>

| <bool>

<factor> ::= (<exp>) | <prim> | <id>

<exp-list> ::= { <prop-exp-list> }

<prop-exp-list> ::= <exp> | <exp> , <prop-exp-list>

<id-list> ::= { <prop-id-list> }

<prop-id-list> ::= <id> | <id> , <prop-id-list>

%% Definitions:

<def> ::= <id> := <exp> ;

%% Primitive Constants, Operators, and Operations:

<null> ::= null

<bool> ::= true | false

<unop> ::= <sign> | ~

<sign> ::= "+" | -

<binop> ::= <sign> | "*" | / | = | != | < | > | <= | >= | & | "|"

6

<prim> ::= number? | function? | list? | null? | cons? | cons

| first | rest | arity

%% In subsequent assignments ref? will be added to <prim>

%% Identifiers:

<id> ::= <alpha/other> {<alpha/other> | <digit>}*

%% except for <prim> and the keywords if, then, else,

%% map, to, let, in, null, true, false

%% In subsequent assignments ref will be added to this list

<alpha/other> ::= <alpha> | <other> %% <other> as defined above

<alpha> ::= <upper> | <lower> %% <upper> and <lower> as defined above

%% Numbers:

<int> ::= <digit>+

The lexer recognizes keywords, delimiters (parentheses, commas, semi-
colons), primitive operations, identifiers, and numbers.

The preceding grammar requires one symbol lookahead in a few situ-
ations. The Scheme lexer in the file lexer.ss supports a peek operation
precisely for this purpose. Given a token stream p, an application of the form
(p x) where x is any argument (e.g., the symbol ’peek) returns a copy of
the next token in p without removing it from (or otherwise changing) p.

In the Java lexer, the method Token peek() behaves exactly like the
method Token readToken() except for the fact that it leaves the the scanned
token at the front of the input stream (in contrast readToken() removes the
scanned token from the input stream).
Abstract Syntax Trees As mentioned above, the Scheme library lexer.ss

defines the set of constructors used to build abstract syntax trees in Scheme.
There is one constructor for each different form of expression in the definition
of Jam syntax given above. In addition, there is one abstract syntax form for
Jam definitions, which can easily express both concrete forms given above.

For example, suppose the Jam program under consideration is

f(x) + (x * 12))

The abstract syntax representation for this program phrase is:

(make-biop-exp ’+

(make-app-exp (make-id-exp ’f) (list (make-id-exp ’x)))

(make-biop-exp ’* (make-id-exp ’x) (make-num-exp 12)))

7

in the context of the following data descriptor definitions:

(define-struct biop-exp (rator rand1 rand2))

(define-struct app-exp (rator l-of-rands))

(define-struct id-exp (arg))

(define-struct num-exp (arg))

The Java file lexer.java defines all of the abstract syntax classes re-
quired to represent Jam programs. There is one constructor for each different
form of expression in the definition of Jam syntax given above. Some prim-
itive (non-recursive) abstract syntax classes are the same the corresponding
token classes. There is one abstract syntax form for Jam definitions, which
can easily express both concrete forms given above.

Testing and Submitting Your Program

The file

www.cs.rice.edu/~javaplt/311/Assignments/1/java.

contains a sample input program. Create a README file in the your direc-
tory program/1 that

• gives the names and userids of both team members,

• outlines the organization of your program, and

• specifies what testing process you used to confirm the correctness of
your program.

Your test data files should be stored in the programs/1 directory.
Each procedure or method in your program should include a short com-

ment stating precisely what it does. For routines that parse a particular
form of program phrase, give a grammar rule(s) describing that form.

To submit your program, make sure that everything that you want
to submit is located in the directory programs/1 and type the command
turnin311 1. The command will inform you whether or not your sub-
mission succeeded. Only submit one copy of your program per team. If you

need to resubmit an improved version your program, submit it from the same

account as the original so that the old version is replaced.

8

Implementation Hints Use an “unparser” to print a concrete representa-
tion for an abstract syntax tree. Then you can directly compare test input
strings and output strings (up to differences in whitespace and parentheses
using for grouping).

9

