
C311 (2000) – Type Inference Study Guide

Corky Cartwright

Produced: December 3, 2003

1 Synopsis of Implicitly Polymorphic Jam

The syntax of (Implicitly) Polymorphic Jam is a restriction of the syntax of untyped Jam.
Every legal Polymorphic Jam program is also a legal untyped Jam Program. But the converse
is false, because there may not be a valid typing for a given untyped Jam program.

1.1 Abstract Syntax

The following grammar describes the abstract syntax of Polymorphic Jam. Each clause in the
grammar corresponds directly to a node in the abstract syntax tree. The let construction has
been limited to a single binding for the sake of notational simplicity. It is straightforward to
generalize the rule to multiple bindings (with mutual recursion). Note that let is recursive.

M ::= M (M · · ·M) | P (M · · ·M) | if M then M else M | let x := M in M
| V

V ::= map x · · ·x to M | x | n | true | false | null
n ::= 1 | 2 | . . .
P ::= cons | first | rest | null? | cons? | + | - | / | * | = | < | <= | <-

| + | - | ~ | ref | !
x ::= variable names

In the preceding grammar, unary and binary operators are treated exactly like primitive
functions.

Monomorphic types in the language are defined by τ , below. Polymorphic types are
defined by σ. The → corresponds to a function type, whose inputs are to the left of the
arrow and whose output is to the right of the arrow.

σ ::= ∀α1 · · ·αn. τ
τ ::= int | bool | unit | τ1 × · · · × τn → τ | α | list τ | ref τ
α ::= type variable names

1

2

1.2 Type Checking Rules

In the following rules, the notation Γ[x1 : τ1, . . . , xn : τn] means the Γ ∪ {x1 : τ1, . . . , xn : τn}
and Γ′ abbreviates Γ[x1 : τ ′

1, . . . , xn : τ ′
n].

Γ[x1 : τ1, . . . , xn : τn] ` M : τ

Γ ` map x1 . . . xn to M : τ1 × · · · × τn → τ
[abs]

Γ ` M : τ1 × · · · × τn → τ Γ ` M1 : τ1 · · · Γ ` Mn : τn

Γ ` M (M1 · · ·Mn) : τ
[app]

Γ ` M1 : bool Γ ` M2 : τ Γ ` M3 : τ

Γ ` if M1 then M2 else M3 : τ
[if]

Note that there are two rules for let expressions. The [letmono] rule corresponds to
the let rule of Typed Jam; it places no restriction on the form of the right-hand side M1

of the let binding. The [letpoly] rule generalizes the free type variables (not occurring
in the type environment Γ) in the type inferred for the right-hand-side of a let binding –
provided that the right-hand-side M1 is a syntactic value: a constant like null or cons, a
map expression, or a variable. Syntactic values are expressions whose evaluation is trivial,
excluding evaluations that allocate storage.

Γ[x : τ] ` x : τ

Γ′ ` M1 : τ ′
1 . . . Γ′ ` Mn : τ ′

n Γ′ ` M : τ

Γ ` let x1 := M1; . . .; xn := Mn; in M : τ
[letmono]

Γ′ ` M1 : τ ′
1 . . . Γ′ ` Mn : τ ′

n Γ[x1 : CM1(τ
′
1,Γ), . . . , xn : CMn(τ ′

n,Γ)] ` M : τ

Γ ` let x1 := M1; . . .; xn := Mn; in M : τ
[letpoly]

Γ[x : ∀α1, . . . , αn. τ] ` x : O(∀α1, . . . , αn. τ, τ1, . . . , τn)

The functions O(·, ·) and C·(·, ·) are the keys to polymorphism. Here is how C·(·, ·) is
defined:

CV (τ, Γ) := ∀{FTV(τ)− FTV(Γ)}. τ
CN(τ, Γ) := τ

where V is a syntactic value, N is an expression that is not a syntactic value, and FTV(α)
means the “free type variables in the expression (or type environment) α”.

When closing over a type, you must find all of the free variables in τ that are not free
in any of the types in the environment Γ. Then, build a polymorphic type by quantifying τ
over all of those type variables.

To open a polymorphic type
∀α1, . . . , αn. τ,

substitute any type terms τ1, . . . , τn for the quantified type variables α1, . . . , αn:

O(∀α1, . . . , αn. τ, τ1, . . . , τn) = τ[α1:=τ1,...,αn:=τn]

which creates a monomorphic type from a polymorphic type. For example,

O(∀α. α → α, τ) = τ → τ

3

1.3 Types of Primitives

The following table gives types for all of the primitive constants, functions, and operators.
The symbol n stands for any integer constant. Programs are type checked starting with a
primitive type environment consisting of this table.

true bool
false bool

n int
null ∀α. list α

cons ∀α. α× list α → list α
first ∀α. list α → α
rest ∀α. list α → list α

cons? ∀α. list α → bool
null? ∀α. list α → bool

= ∀α. α× α → bool
!= ∀α. α× α → bool

+ int× int → int
- int× int → int
* int× int → int
/ int× int → int

< int× int → bool
> int× int → bool

<= int× int → bool
>= int× int → bool

(unary) - int → int
(unary) + int → int
(unary) ˜ bool → bool

<- ∀α. ref α× α → unit
ref ∀α. α → ref α

! ∀α. ref α → α

1.4 Typed Jam

The Typed Jam language used in Assignment 5 (absent the explicit type information embed-
ded in program text) can be formalized as a subset of Polymorphic Jam. For the purposes
of these exercises, Typed Jam is simply Polymorphic Jam less the letpoly inference rule
which prevents it from inferring polymorphic types for program-defined functions.

2 Exercises

Task 1: Prove the following type judgements for Typed Jam or explain why they are not
provable:

1. Γ0 |- (map x to x(10))(map x to x) : int

2. Γ0 |- let fact := map n to if n=0 then 1 else n*(fact(n-1));

in fact(10)+fact(0) : int

3. Γ0 |- (map x to 1 + (1/x))(0) : int

4. Γ0 |- (map x to x) (map y to y) : (int -> int)

5. Γ0 |- let id := map x to x; in id(id) : (int -> int)

4

Task 2: Are the following Polymorphic Jam programs typable? Justify your answer either
by giving a proof tree (constructed using the inference rules for PolyJam) or by showing a
conflict in the type constraints generated by matching the inference rules against the program
text.

1. let listMap := map f,l to
if null?(l) then null
else cons(f(first(l)), listMap(f, rest(l)))

in listMap(first,null);

2.
let length := map l to if null?(l) then 0

else 1 + length(rest(l));
l := cons(cons(1,null),cons(cons(2,cons(3,null)),null));

in length(l)+length(first(l))

Task 3: Give a simple example of an untyped Jam expression that is not typable in Typed
Jam but is typable in Polymorphic Jam.

3 Solutions to Selected Exercises

Task 1 : The first four expressions are typable in Typed Jam, but the fifth is not.

1. Tree 1:

Γ0[f:int → int] ` 10:int Γ0[f:int → int] ` f:int → int

Γ0[f:int → int] ` f(10):int
[app]

Γ0 ` map f to f(10):(int → int) → int
[abs]

Tree 2:

Tree 1
Γ0[x:int] ` x:int

Γ0 ` map x to x:int → int
[abs]

Γ0 ` (map f to f(10))(map x to x):int
[app]

2. Type Inference Proof Omitted.

3. Tree 1:

Γ0[x:int] ` /:int× int → int Γ0[x:int] ` 1:int Γ0[x:int] ` x:int

Γ0[x:int] ` 1/x:int]
[app]

Tree 2:

Γ0[x:int] ` +:int× int → int Γ0[x:int] ` 1:int Tree 1
Γ0[x:int] ` (1 + (1/x)):int

[app]

Γ0 ` (map x to 1 + (1/x)):int → int
[abs]

5

Tree 3:
Tree 2 Γ0 ` 0:int

Γ0 ` (map x to 1 + (1 /x))(0):int
[app]

4. Tree 1:
Γ0[x:int → int] ` x:int → int

Γ0 ` (map x to x):(int → int) → (int → int)
[abs]

Tree 2:
Γ0[y:int] ` y:int

Γ0 ` (map y to y):int → int
[abs]

Tree 3:
Tree 1 Tree 2

Γ0 ` (map x to x)(map y to y):int → int
[app]

5. This example is almost identical to the previous one, but the identity function id is defined
only once in a let binding and then applied to itself. Since Typed Jam does not support
polymorphism, we can only assign one typing to id. But we needed two different typings for
the identity in the preceding example, so we cannot type this program.

Task 2: Both programs are typable in Polymorphic Jam. In fact the first program is
typable in Typed Jam because the length function is only applied to one type of list. Hence
the letmono rule can be used to type the let expression in this program instead of the
more general letpoly rule.

1. Type Inference Proof Omitted.

2. Let Γ1 abbreviate
Γ0[length : list t → int, l : list list int]

and let Γ2 abbreviate

Γ0[length : ∀t. (list t → int), l : list list int].

Tree 1:

Γ1 ` rest : list list int → list list int Γ1 ` l : list list int

Γ1 ` rest(l) : list list int
[app] Γ1 ` length : list list int → int

Γ1 ` length(rest(l)) : int
[app]

Tree 2:
Γ1 ` + : int× int → int Γ1 ` 1:int Tree 1

Γ1 ` 1+length(rest(l)) : int
[app]

Tree 3:

Γ1 ` null? : list list int → bool Γ1 ` l : list list int

Γ1 ` null?(l) : bool
[app] Γ1 ` 0 : int Tree 2

Γ1 ` if null?(l) then 0 else 1+length(rest(l)) : int
[if]

6

Tree 4:

Γ1 ` cons : int× list int → list int Γ1 ` 1 : int Γ1 ` null : list int

Γ1 ` cons(1,null) : list int
[app]

Tree 5:

Γ1 ` cons : int× list int → list int Γ1 ` 3 : int Γ1 ` null : list int

Γ1 ` cons(3,null) : list int
[app]

Tree 6:
Γ1 ` cons : int× list int → list int Γ1 ` 2 : int Tree 5

Γ1 ` cons(2,cons(3,null)) : list int
[app]

Tree 7:

Γ1 ` cons : list int× list list int → list list int Tree 6 Γ1 ` null : list list int

Γ1 ` cons(cons(2,cons(3,null)),null) : list list int
[app]

Tree 8:

Γ2 ` cons : list int× list list int → list list int Tree 4 Tree 7
Γ2 ` cons(cons(1,null), cons(cons(2,cons(3,null)), null)) : list list int

[app]

Tree 9:

Γ1 ` length : list list int → list int
Γ2 ` first : list list int → list int Γ2 ` l : list list int

Γ2 ` first(l) : list int
[app]

Γ1 ` length(first(l)) : int
[app]

Tree 10

Γ1 ` + : int× int → int
Γ2 ` length : list list int → int Γ2 ` l : list list int

Γ2 ` length(l) : int
[app]Tree 8

Γ2 ` length(l)+length(first(l)):int
[app]

Tree 11

Tree 3 Tree 8 Tree 10
Γ0 ` let length := map l to

if null?(l) then 0
else 1 + length(rest(l))

l := cons(cons(1,null),cons(cons(2,cons(3,null)),null))
in length(l)+length(first(l)):int

[letpoly]

Task 3: The second program in the preceding section is an example. The following is a
shorter (but not necessarily simpler) example:

let id := map x to x;
in (id(id))(0)

The program is not typable in Typed Jam because the function id is applied to an argument
of type int → int and again (since id(id) is id) to the an argument of type int. Hence it
must have type (int → int) → (int → int) and type (int → int) which cannot be unified.

