

Comp 411
Principles of Programming Languages

Lecture 1
Course Overview and Culture

Corky Cartwright
Swarat Chaudhuri
August 22, 2011

Course Facts

See web page www.cs.rice.edu/~javaplt/411
Sign up for the 411 mailing list
 comp411-l@mailman.rice.edu
Participate in the course mailing list
(newsgroup)

http://www.cs.rice.edu/~javaplt/411

What is Comp 411?
• The course formerly called Comp 311
• Anatomy (Syntax) and Physiology (Semantics) of

Programming Languages
– What is the anatomy of a programming language

• Parsing and abstract syntax
• Lexical nesting and the scope of variables

– What are the conceptual building blocks of
programming languages? (common anatomical
structures and their functions)

– Use high-level interpreters to define meaning of
languages (expression evaluators)

What is Comp 411, cont.
– Using anatomy to prevent bugs

• Type systems
• Type checking
• Type inference (reconstruction)

– Mechanisms for language extension
• Syntax extension (macros)
• Reflection
• Custom class loaders

– Sketch how the interpretation process can actually be
efficiently implemented by machine instructions

• CPS transformation
• Garbage Collection

Subtext of Comp 411
• Teach good software engineering practice.
• You have to write lots of lines of conceptually challenging lines of code

in this course. With good software engineering practices, the workload
is reasonable.

• With poor software engineering practices, the workload is unreasonable.
• The assignments in this course leverage abstractions that are not explicit

in Java but are explicit in the taxonomy of language constructs that we
will consider. In Java, these abstractions are implemented using “design
patterns”. In newer languages like Scala, they are built into the
language.

Good Software Engineering
Practice

• Test-driven design
– Unit tests for each non-trivial method written before

any method code is written
– Unit tests are a permanent part of the code base

• Pair programming
• Continual integration
• Continual refactoring to avoid code duplication
• Conscientious documentation (contracts)
• Avoiding mutation unless there is a compelling

reason

Why Study Programming
Languages?

• Programmers must master the programming languages of
importance within the domains in which they are working.

• New languages are continually being developed. Who
knows what languages may be involved in computing 25
years from now?

• Many software applications involve defining and
implementing a programming language.

• A deep knowledge of programming languages expands the
range of possible solutions available to a software
developer. A program design may involve extending the
designated implementation language either explicitly
(macros, new/revised translators & custom class loaders)
or implicitly (new libraries, hand-translation)

• Some implementation languages are extensible through
macros, reflection, or customizable class loaders.

Course Culture
• Approximately 8 programming assignments
7 required
1-2 extra credit
• Assignments must be done in either Generic Java

(Java 6.0). We encourage you to use DrJava.
Both JUnit and javadoc are built-in to DrJava and
it fully compatible with command line
compilation, execution, and testing (using for
example ant scripts).

• Late assignments not accepted, but …
– Every student has 7 slip days to use as he/she sees fit.
– Saving as many as possible until late in the term is

advantageous.

Course Culture, cont.

• Assignments are cumulative.
• Class solutions are provided for the first

three assignments within three days after
they are due.

• After the third assignment, you are on your
own. Extensive unit testing is important
because you can reuse previous unit tests on
subsequent assignments with no change in
most cases.

Course Culture, cont.
• My teaching style

– Encourage you to develop a passion for the subject and
personally digest and master the material.

– Make the course accessible to students who don't aspire
to become language researchers (avoid repeating my
experience in complex analysis with Andy Gleason)

– Weaknesses:
• Tendency to digress
• Explain concepts at too abstract a level without sufficient

examples

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

