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Recursive Definitions
• Given a Scott-domain D, we can write equations 

of the form:
      f  =  Ef
where Ef is an expression constructed from 
constants in D, operations (continuous functions) 
on D, and f.

• Example: let D be the domain of Scheme unary 
functions on numbers.  Then
  fact = 
   (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))
is such an equation.

• Such equations are called recursive definitions.



  

Solutions to Recursion Equations
Given an equation:
      f  =  Ef

what is a solution?  All of the constants and operations in 
Ef are known except f.
A solution is any function f* such that 
      f*  =  Ef*
is a solution.  But there may be more than one solution.  
We want to select the “best” solution.   Note that  f* is an 
element of whatever domain D* is the type of  Ef.   In the 
most common case, it is D → D, for a domain of values D, 
but it can be D, Dk → D, …  The best solution (the one 
that always exists, is unique, and is computable is the least 
solution under the approximation ordering in D*.



  

Constructing the Least Solution
How do we know that any solution exists to the equation  f  =  Ef ?
We will construct the least solution and prove it is a solution!
Since the domain D* for  f is a Scott-Domain, it has a least element botD*.  Hence, 
botD* approximates every solution to the equation
      f  =  Ef .
Now form the function  F: D* → D* defined by 
    F(f) = Ef 
or equivalently, 
    F = λ f . Ef 
Consider the sequence S: botD*, F(botD*), F(F(botD*)), ..., Fk(botD*), ....  
Claim:  S is an ascending chain (chain for short) in D* → D*.  
Proof. botD* <=  F(botD*) by the definition of botD* .  If  M <= N,  then  F(M)  <=  
F(N) by monotonicity.  Hence,  Fk(botD)  <=  Fk+1(botD) for all k.  Q.E.D.
Claim: S has a least upper bound f* 
Proof.  Trivial.  S is a chain in D* and hence must have a least upper bound because 
D* is a Scott-Domain.



  

Proving f* is a fixed point of  F
Must show:   F(f*) = f*   where  F = λ f . Ef.

Claim:  By definition   f*  = Fk(botD*) .  Since F is 
continuous
    F(f*) = F(Fk(botD*)) 
              =  Fk+1(botD*)      (by continuity)
              =  Fk(botD*)       (since botD* <= F(botD*))

                 = f*
Q.E.D. 

Note: all of the steps in the preceding proof are trivial except for 
the step justified by continuity.



  

Examples
Look at factorial in detail using DrScheme.



  

How Can We Compute f* Given F?
Need to construct  F∞(⊥) from F using only -abstractoin and 
application.   We need to define an operator Y such that:
   Y(F) = f* = F∞(⊥).
Idea: use syntactic trick in  to build a potentially infinite stack 
of Fs.  
•Preliminary attempt:
  (x. F(x x)) (x. F(x x))
•Reduces to (in one step):
F ((x. F(x x)) (x. F(x x)))
•Reduces to (in k steps):
Fk ((x. F(x x)) (x. F(x x)))



  

What Is the Code for Y?
    F. (x. F(x x))(x. F(x x))
• Does this work for Scheme (or Java with an 

appropriate encoding of functions as anonymous 
inner classes)?   No!

• Why not?  What about divergence?  Assume G
is a -expression defining a functional like FACT

  (F. (x. F(x x))(x. F(x x)))G
= G((x. G(x x))(x. G(x x)))
= … (divergence forced by CBV)



  

What If We Use Call-by-name?
By assumption G must have the form  ( f.  ( n . M))
    (F. (x. F(x x))(x. F(x x))) G
 => (x. G(x x))(x. G(x x))          <**>
 => G <**>
 =  ( f.  ( n . M)) <**>
 => ( n . M[f:=<**>])                  <*>
which is a value.  If this value <*> is applied to a value k and  M[f:=<**>]
[n:=k] does not require evaluating an occurrence of  <**>, then the 
computation returns a base answer determined by M.  Otherwise, <**> is 
unwound once, as in the computation above to produce <*> applied to its 
argument.  If the argument is less than k (in some well-founded ordering) this 
process eventually terminates when k reaches a value that does not force the 
evaluation of <**>.  At this point, the subcomputation <*> b returns a base 
value and the enclosing computation (not involving recursive calls <**>) is 
performed, returning a value.  If the top-level application of 
Exercise: how can we workaround the divergence problem to create a version 
of the Y operator that works for call-by-value Scheme and Jam?  Hint: if N is 
a divergent term denoting a unary function, then x.Nx is an “equivalent” 
term that is not divergent (assuming x does occur in N). 
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