Comp 311 Principles of Programming Languages Lecture 11 The Semantics of Recursion II

> Corky Cartwright Swarat Chaudhuri September 16, 2010

Recursive Definitions

• Given a Scott-domain D, we can write equations of the form:

 $\mathbf{f} = \mathbf{E}_{f}$

where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and **f**.

• Example: let D be the domain of Scheme unary functions on numbers. Then

fact =

(lambda (n) (if (zero? n) 1 (* n (fact (- n 1))))
is such an equation.

Solutions to Recursion Equations

Given an equation:

 $f = E_f$

what is a solution? All of the constants and operations in E_{f} are known except f.

A solution is any function f^* such that $f^* = E_{f^*}$

is a solution. But there may be more than one solution. We want to select the "best" solution. Note that f^* is an element of whatever domain D* is the type of E_f . In the most common case, it is D \rightarrow D, for a domain of values D, but it can be D, D^k \rightarrow D, ... The best solution (the one that always exists, is unique, and is *computable* is the *least* solution under the approximation ordering in D*.

Constructing the Least Solution

How do we know that any solution exists to the equation $f = E_f$?

We will construct the least solution and prove it is a solution!

Since the domain D* for **f** is a Scott-Domain, it has a least element **bot**_{D*}. Hence, **bot**_{D*} approximates every solution to the equation

 $f = E_{f}$.

Now form the function $F: D^* \to D^*$ defined by

 $F(f) = E_f$

or equivalently,

 $F = \lambda f \cdot E_{f}$

Consider the sequence S: bot_{p*} , $F(bot_{p*})$, $F(F(bot_{p*}))$, ..., $F^{k}(bot_{p*})$, Claim: S is an ascending chain (chain for short) in $D^{*} \rightarrow D^{*}$. Proof. $bot_{p*} \leq F(bot_{p*})$ by the definition of bot_{p*} . If $M \leq N$, then $F(M) \leq F(N)$ by monotonicity. Hence, $F^{k}(bot_{p}) \leq F^{k+1}(bot_{p})$ for all k. Q.E.D. Claim: S has a least upper bound f^{*} Proof. Trivial. S is a chain in D* and hence must have a least upper bound because

D* is a Scott-Domain.

Proving **f*** is a fixed point of **F**

Must show: $F(f^*) = f^*$ where $F = \lambda f \cdot E_f$.

- Claim: By definition $f^* = \bigcup F^k(bot_{D^*})$. Since F is continuous $F(f^*) = F(\bigcup F^k(bot_{D^*}))$ $= \bigcup F^{k+1}(bot_{D^*})$ (by continuity)
 - $= \cup \mathbf{F}^{\mathsf{k}}(\mathbf{bot}_{\mathsf{D}^{*}})$

= **f***

(by continuity) (since $bot_{p*} \ll F(bot_{p*})$)

Q.E.D.

Note: all of the steps in the preceding proof are trivial except for the step justified by continuity.

Examples

Look at factorial in detail using DrScheme.

How Can We Compute **f*** Given **F**?

Need to construct $F^{\infty}(\bot)$ from F using only -abstractoin and application. We need to define an operator Y such that:

 $Y(F) = f^* = F^{\infty}(\bot).$

Idea: use syntactic trick in Ω to build a potentially infinite stack of Fs.

•Preliminary attempt:

 $(\lambda \mathbf{x} \cdot \mathbf{F}(\mathbf{x} \cdot \mathbf{x})) (\lambda \mathbf{x} \cdot \mathbf{F}(\mathbf{x} \cdot \mathbf{x}))$

•Reduces to (in one step):

F ($(\lambda x. F(x x))$ ($\lambda x. F(x x)$))

•Reduces to (in k steps):

 \mathbf{F}^{k} (($\lambda \mathbf{x}$. $\mathbf{F}(\mathbf{x} \mathbf{x})$) ($\lambda \mathbf{x}$. $\mathbf{F}(\mathbf{x} \mathbf{x})$))

What Is the Code for Y?

$\lambda \mathbf{F}$. ($\lambda \mathbf{x}$. $\mathbf{F}(\mathbf{x} \mathbf{x})$) ($\lambda \mathbf{x}$. $\mathbf{F}(\mathbf{x} \mathbf{x})$)

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No!
- Why not? What about divergence? Assume G is a λ -expression defining a functional like FACT
 - (λF. (λx. F(x x)) (λx. F(x x)))G = G((λx. G(x x)) (λx. G(x x))) = ... (divergence forced by CBV)

What If We Use Call-by-name?

By assumption **G** must have the form $(\lambda f. (\lambda n. M))$

(λ F. (λ x. F(x x)) (λ x. F(x x))) G

- $=> (\lambda \mathbf{x}. \mathbf{G}(\mathbf{x} \mathbf{x})) (\lambda \mathbf{x}. \mathbf{G}(\mathbf{x} \mathbf{x})) < \langle * * \rangle$
- => G <**>
- = $(\lambda f. (\lambda n. M)) <**>$
- => $(\lambda n. M[f:=<**>])$

<*>

which is a value. If this value <*> is applied to a value k and M[f:=<**>] [n:=k] does not require evaluating an occurrence of <**>, then the computation returns a base answer determined by M. Otherwise, <**> is unwound once, as in the computation above to produce <*> applied to its argument. If the argument is less than k (in some well-founded ordering) this process eventually terminates when k reaches a value that does not force the evaluation of <**>. At this point, the subcomputation <*> b returns a base value and the enclosing computation (not involving recursive calls <**>) is performed, returning a value. If the top-level application of

Exercise: how can we workaround the divergence problem to create a version of the **Y** operator that works for call-by-value Scheme and Jam? Hint: if **N** is a divergent term denoting a unary function, then $\lambda \mathbf{x} \cdot \mathbf{N} \mathbf{x}$ is an "equivalent" term that is not divergent (assuming **x** does occur in **N**).