

Comp 311
Principles of Programming Languages

Lecture 11
The Semantics of Recursion II

Corky Cartwright
Swarat Chaudhuri

September 16, 2010

Recursive Definitions
• Given a Scott-domain D, we can write equations

of the form:
 f = Ef
where Ef is an expression constructed from
constants in D, operations (continuous functions)
on D, and f.

• Example: let D be the domain of Scheme unary
functions on numbers. Then
 fact =
 (lambda (n) (if (zero? n) 1 (* n (fact (- n 1)))))
is such an equation.

• Such equations are called recursive definitions.

Solutions to Recursion Equations
Given an equation:
 f = Ef

what is a solution? All of the constants and operations in
Ef are known except f.
A solution is any function f* such that
 f* = Ef*
is a solution. But there may be more than one solution.
We want to select the “best” solution. Note that f* is an
element of whatever domain D* is the type of Ef. In the
most common case, it is D → D, for a domain of values D,
but it can be D, Dk → D, … The best solution (the one
that always exists, is unique, and is computable is the least
solution under the approximation ordering in D*.

Constructing the Least Solution
How do we know that any solution exists to the equation f = Ef ?
We will construct the least solution and prove it is a solution!
Since the domain D* for f is a Scott-Domain, it has a least element botD*. Hence,
botD* approximates every solution to the equation
 f = Ef .
Now form the function F: D* → D* defined by
 F(f) = Ef
or equivalently,
 F = λ f . Ef
Consider the sequence S: botD*, F(botD*), F(F(botD*)), ..., Fk(botD*),
Claim: S is an ascending chain (chain for short) in D* → D*.
Proof. botD* <= F(botD*) by the definition of botD* . If M <= N, then F(M) <=
F(N) by monotonicity. Hence, Fk(botD) <= Fk+1(botD) for all k. Q.E.D.
Claim: S has a least upper bound f*
Proof. Trivial. S is a chain in D* and hence must have a least upper bound because
D* is a Scott-Domain.

Proving f* is a fixed point of F
Must show: F(f*) = f* where F = λ f . Ef.

Claim: By definition f* = Fk(botD*) . Since F is
continuous
 F(f*) = F(Fk(botD*))
 =  Fk+1(botD*) (by continuity)
 =  Fk(botD*) (since botD* <= F(botD*))

 = f*
Q.E.D.

Note: all of the steps in the preceding proof are trivial except for
the step justified by continuity.

Examples
Look at factorial in detail using DrScheme.

How Can We Compute f* Given F?
Need to construct F∞(⊥) from F using only -abstractoin and
application. We need to define an operator Y such that:
 Y(F) = f* = F∞(⊥).
Idea: use syntactic trick in  to build a potentially infinite stack
of Fs.
•Preliminary attempt:
 (x. F(x x)) (x. F(x x))
•Reduces to (in one step):
F ((x. F(x x)) (x. F(x x)))
•Reduces to (in k steps):
Fk ((x. F(x x)) (x. F(x x)))

What Is the Code for Y?
 F. (x. F(x x))(x. F(x x))
• Does this work for Scheme (or Java with an

appropriate encoding of functions as anonymous
inner classes)? No!

• Why not? What about divergence? Assume G
is a -expression defining a functional like FACT

 (F. (x. F(x x))(x. F(x x)))G
= G((x. G(x x))(x. G(x x)))
= … (divergence forced by CBV)

What If We Use Call-by-name?
By assumption G must have the form (f.  (n . M))
 (F. (x. F(x x))(x. F(x x))) G
 => (x. G(x x))(x. G(x x)) <**>
 => G <**>
 = (f.  (n . M)) <**>
 => (n . M[f:=<**>]) <*>
which is a value. If this value <*> is applied to a value k and M[f:=<**>]
[n:=k] does not require evaluating an occurrence of <**>, then the
computation returns a base answer determined by M. Otherwise, <**> is
unwound once, as in the computation above to produce <*> applied to its
argument. If the argument is less than k (in some well-founded ordering) this
process eventually terminates when k reaches a value that does not force the
evaluation of <**>. At this point, the subcomputation <*> b returns a base
value and the enclosing computation (not involving recursive calls <**>) is
performed, returning a value. If the top-level application of
Exercise: how can we workaround the divergence problem to create a version
of the Y operator that works for call-by-value Scheme and Jam? Hint: if N is
a divergent term denoting a unary function, then x.Nx is an “equivalent”
term that is not divergent (assuming x does occur in N).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

