Comp 311
 Principles of Programming Languages Lecture 11
 The Semantics of Recursion II

Corky Cartwright
Swarat Chaudhuri

September 16, 2010

Recursive Definitions

- Given a Scott-domain D, we can write equations of the form:

$$
f=E_{f}
$$

where E_{f} is an expression constructed from constants in D , operations (continuous functions) on D , and f .

- Example: let D be the domain of Scheme unary functions on numbers. Then

fact =

(1ambda (n) (if (zero? n) 1 (* n (fact (- n 1))))) is such an equation.

Solutions to Recursion Equations

Given an equation:

$$
f=E_{f}
$$

what is a solution? All of the constants and operations in E_{f} are known except f.
A solution is any function $f *$ such that

$$
f^{*}=E_{f *}
$$

is a solution. But there may be more than one solution. We want to select the "best" solution. Note that $f *$ is an element of whatever domain D^{*} is the type of E_{f}. In the most common case, it is $\mathrm{D} \rightarrow \mathrm{D}$, for a domain of values D , but it can be $\mathrm{D}, \mathrm{D}^{\mathrm{k}} \rightarrow \mathrm{D}, \ldots$ The best solution (the one that always exists, is unique, and is computable is the least solution under the approximation ordering in D^{*}.

Constructing the Least Solution

How do we know that any solution exists to the equation $f=E_{f}$?
We will construct the least solution and prove it is a solution!
Since the domain D^{*} for f is a Scott-Domain, it has a least element bot $t^{{ }^{*}}$. Hence, bot $_{D_{*}}$ approximates every solution to the equation

$$
f=E_{f} .
$$

Now form the function $F: D^{*} \rightarrow D^{*}$ defined by

$$
F(f)=E_{f}
$$

or equivalently,

$$
F=\lambda f . E_{f}
$$

Consider the sequence S : $\operatorname{bot}_{\mathrm{D}^{*}}, \mathrm{~F}\left(\operatorname{bot}_{\mathrm{D}^{*}}\right), \mathrm{F}\left(\mathrm{F}\left(\operatorname{bot}_{\mathrm{D}^{*}}\right)\right), \ldots, \mathrm{F}^{\mathrm{k}}\left(\operatorname{bot}_{\mathrm{D}^{*}}\right), \ldots$. Claim: S is an ascending chain (chain for short) in $D^{*} \rightarrow D^{*}$.
Proof. bot $\mathrm{D}_{\mathrm{D} *}<=\mathrm{F}\left(\right.$ bot $\left._{\mathrm{D} *}\right)$ by the definition of bot $_{\mathrm{D}_{*}}$. If $\mathrm{M}<=\mathbf{N}$, then $\mathrm{F}(\mathrm{M})<=$ $F(N)$ by monotonicity. Hence, $F^{k}\left(\operatorname{bot}_{D}\right)<=F^{k+1}\left(\operatorname{bot}_{D}\right)$ for all k. Q.E.D.
Claim: S has a least upper bound $\mathrm{f} *$
Proof. Trivial. S is a chain in D^{*} and hence must have a least upper bound because D^{*} is a Scott-Domain.

Proving $\mathbf{f} \%$ is a fixed point of F

Must show: $F(f *)=f *$ where $F=\boldsymbol{\lambda} f . E_{f}$.
Claim: By definition $f *=U F^{k}\left(\right.$ bot $\left._{\mathrm{D} *}\right)$. Since F is continuous

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{f}_{*}\right) & =\mathrm{F}\left(\cup \mathrm{~F}^{k}\left(\text { bot }_{\mathrm{D}_{*}}\right)\right) & & \\
& =\cup \mathrm{F}^{k+1}\left(\text { bot }_{\mathrm{D}_{*}}\right) & & (\text { by continuity }) \\
& =\cup \mathrm{F}^{k}\left(\text { bot }_{\mathrm{D}^{*}}\right) & & \left(\text { since bot } \mathrm{D}_{\mathrm{D}^{*}}<=\mathrm{F}\left(\text { bot }_{\mathrm{D}^{*}}\right)\right) \\
& =\mathrm{f}^{*} & &
\end{aligned}
$$

Q.E.D.

Note: all of the steps in the preceding proof are trivial except for the step justified by continuity.

Examples

Look at factorial in detail using DrScheme.

How Can We Compute f* Given F?

Need to construct $F^{\infty}(\perp)$ from F using only -abstractoin and application. We need to define an operator Y such that:
$Y(F)=f \%=F^{\infty}(\perp)$.
Idea: use syntactic trick in Ω to build a potentially infinite stack of Fs.
-Preliminary attempt:
($\lambda \mathbf{x} . F(\mathbf{x} \mathbf{x})$) ($\lambda \mathbf{x} . F(\mathbf{x} \mathbf{x})$)
-Reduces to (in one step):
F ($(\lambda \mathbf{x} \cdot \mathrm{F}(\mathbf{x} \mathbf{x}))(\lambda \mathbf{x} . \mathrm{F}(\mathbf{x} \mathbf{x})))$
-Reduces to (in k steps):
$F^{k}((\lambda x \cdot F(x \quad x))(\lambda x \cdot F(x \quad x)))$

What Is the Code for Y ?

$$
\lambda F . \quad(\lambda x . F(x \quad x))(\lambda x . F(x \quad x))
$$

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No!
- Why not? What about divergence? Assume G is a λ-expression defining a functional like $F A C T$
 $=G((\lambda \mathbf{x} \cdot G(\mathbf{x} \mathbf{x}))(\lambda \mathbf{x} . G(\mathbf{x} \mathbf{x})))$
$=\ldots$ (divergence forced by CBV)

What If We Use Call-by-name?

By assumption G must have the form ($\lambda \mathrm{f}$. ($\lambda \mathrm{n} . \mathrm{M}$))

```
    (\lambdaF. (\lambdax. F(x x)) (\lambdax. F(x x))) G
=> (\lambdax.G(x x))(\lambdax.G(x x)) <**>
=> G <**>
= (\lambdaf. (\lambdan. M)) <**>
=> (\lambdan. M[f:=<**>])
<*>
```

which is a value. If this value $\langle *>$ is applied to a value k and $M[f:=<* *>$] [$\mathrm{n}:=\mathrm{k}$] does not require evaluating an occurrence of $\langle * *\rangle$, then the computation returns a base answer determined by M. Otherwise, <**> is unwound once, as in the computation above to produce <*> applied to its argument. If the argument is less than k (in some well-founded ordering) this process eventually terminates when \mathbf{k} reaches a value that does not force the evaluation of <**>. At this point, the subcomputation <*> b returns a base value and the enclosing computation (not involving recursive calls $\langle * *\rangle$) is performed, returning a value. If the top-level application of
Exercise: how can we workaround the divergence problem to create a version of the \mathbf{Y} operator that works for call-by-value Scheme and Jam? Hint: if \mathbf{N} is a divergent term denoting a unary function, then $\lambda \mathbf{x} . \mathbf{N x}$ is an "equivalent" term that is not divergent (assuming \mathbf{x} does occur in \mathbf{N}).

