Comp 311
 Principles of Programming Languages Lecture 12 The Semantics of Recursion III

Corky Cartwright
Swarat Chaudhuri

September 19, 2011

Call-by-value Fixed-Point Operators

Given a recursive definition in a call-by-value language

$$
f=E_{f}
$$

where E_{f} is an expression constructed from constants in the based data domain D , operations (continuous functions) on D , and f , what does it mean?

Example: let D be the domain of Scheme values. Then
fact =
(1ambda (n) (if (zero? n) 1 (* n (fact (- n 1))))) is a program defining a function in $\mathrm{D} \rightarrow \mathrm{D}$.
In a call-by-name language, the meaning of fact is

Y (lambda (f) E_{f})

where $\mathbf{Y}=$
(1ambda (F) (1ambda (x) (F (x x))) (1ambda (x) (F (x x))) but this expression diverges using call-by-value beta-reduction.

Formulating $\mathbf{Y}_{\mathbf{v}}$ (Call-by-Value \mathbf{Y})

Key trick: use η-conversion to delay evaluation.
In the mathematical literature on the λ-calculus, η-conversion is often assumed as an axiom. In models of the λ-calculus, it is typically required to hold.
Definition: η-conversion is the following equation:

$$
M=\lambda x . M x
$$

where \mathbf{x} is not free in \boldsymbol{M}.
Examples:

$$
\begin{aligned}
& y=\square \lambda x . y x \\
& \lambda y \cdot y=\lambda x . \quad(\lambda y \cdot y) x
\end{aligned}
$$

What Is the Code for Y_{v} ?

```
\lambdaF.(\lambdax.\lambday.F(x x)y)(\lambdax.\lambday.F(x x) y)
```

- Recall that application associates to the left: $F(\mathbf{x} \mathbf{x}) \mathrm{y}=(\mathrm{F}(\mathbf{x} \mathbf{x})) \mathrm{y}$
- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!
- Let G be some functional $G=\lambda f . \lambda n . M_{f}$ like $F A C T$ for a recursive function definition. G is a value. Then
$Y_{v} G \rightarrow(\lambda x \cdot \lambda y \cdot G(x \quad x) y)(\lambda x \cdot \lambda y \cdot G(x \quad x) y) \rightarrow$
$\lambda y . G((\lambda x . \lambda z . G(x \quad x) z)(\lambda x . \lambda z . G(x \quad x) z)) y$ is a value.
. Hence, $G\left(Y_{v} G\right) \rightarrow\left(\lambda n \cdot M_{f}\right)\left[f:=Y_{v} G\right]$ is a value.
- Moreover,

$$
\begin{aligned}
& Y_{v} G=\lambda y \cdot G((\lambda x \cdot \lambda z \cdot G(x x) z)(\lambda x \cdot \lambda z \cdot G(x x) z)) y= \\
& \lambda y \cdot G\left(Y_{v} G\right) y
\end{aligned}
$$

which is the η-conversion of $G\left(Y_{v} G\right)$

Loose Ends

- Meta-errors
- Read the notes!
- Explains how to implement rec-let more thoroughly

