

Comp 411
Principles of Programming Languages

Lecture 17
Run-time Environment Representations

Corky Cartwright
Swarat Chaudhuri
October 3, 2011

Comp 411
Principles of Programming Languages

Lecture 17
Run-time Environment Representations

Corky Cartwright
Swarat Chaudhuri
October 3, 2011

Stack-Based Environment Representations
• In Algol-like languages, the environments that exist at any point during a

computation can be collectively represented using a stack that is an elaboration of
the control stack supporting procedure calls.

• Algol-like languages are almost always compiled to machine code rather than
interpreted like Jam. Nevertheless, the compiled code must perform the same
operations on program data structures as interpreted code does. A compiler
typically performs far more program analysis than an interpreter enabling it to pre-
compute quantities that are determined at run-time by an interpreter.

• Almost all modern machines provide a control stack to store the return addresses of
procedure calls. In addition, other context information (such as saved register
values) is typically saved with the return address in a frame on the control stack. To
return, the called procedure pops the current (top) frame off the stack, restores the
saved context information and jumps to the specified return address. Popping the
stack frame for a called procedure restores the stack to the form it had before the
call (but the bindings of some variables stored in the stack may have changed).

• Many machines also pass argument values to procedures in the stack. Another
possible convention is to pass arguments (up to some bound) in registers.

• The result returned by a procedure is typically returned in a register because the
stack frame associated with the call is deallocated on return.

Lexical Scope in Stack Environments
 In a stack-based implementation of a lexically-scoped language, a new

environment is constructed (extend-env in our LC interpreter) to evaluate
the body of a let or lambda-application by allocating a new frame called
an activation record on the control stack. The activation record contains:
 the new variable bindings introduced by the let or lambda,
 a pointer called the static link pointing back to the rest of the environment

(a linked list of activation records),
 a pointer called the dynamic link to the preceding activation record,
 the return address (address of the next instruction in the code block that

invoked the let or lambda-application), and
 any register/context values that need to be saved for restoration on return

from the let or lambda.
 In this representation, an environment consists of a linked list of activation

records where the static link serves as the link field. The first record in the
sequence contains the local bindings (static distance 0), the second record
gives the bindings at static distance 1, and so forth. The length of this list is
simply the lexical nesting level of the body of the let or lambda-
application being evaluated.

Environment Extension in Stack Environments
For let invocations (regardless of whether let is recursive)

 (let ([x1 e1] ... [xn en]) E)
and raw lambda applications
 ((lambda (x1 ... xn) E) e1 ... en)
the static link and dynamic link in the new activation record both point to

the same place, namely the preceding activation record on the stack (the
activation record for the enclosing let form or lambda application).

For a function application
 (f e1 ... en)
where f is the name of a declared function (in scope), the static link in the

new activation points to the activation record in the static chain
corresponding the static distance between the application site and the
definition of f. Hence, this activation record contains the bindings of
the variables defined in the same lexical unit as f. For a simple
recursive function call (e.g., the recursive call in the usual definition of
factorial), this static link is identical to the static link in the calling
activation record (the preceding activation record on the stack).

Closure Representation in Stack Environments

• What is a closure? A pair containing code and an
environment.

• How can we represent such a pair given the
environment is a linked list of activation records?
– Environments are represented by pointers to activation

records. The represented environment is the linked list of
activation records (determined by the static link fields)
specified by the pointer.

– A closure is a pair consisting of the address of the routine
(procedure) to be executed and the corresponding
environment (pointer).

– When a closure is invoked the embedded environment frame
is typically not the top (most recently created) stack frame.
This environment pointer is copied into the static link of the
new frame allocated for the closure invocation.

Runtimes for Modern Stack-based Languages
• Nearly all practical languages are stack-based. Some ML

implementations are not but it is a stretch to claim that they are
practical.

• Nearly all modern stack-based languages also include a heap
which is simply a data area where the lifetimes of data values do
not necessarily obey a stack discipline.

• Historically, practical languages have always provided such a
data area (perhaps in ugly, low-level form), e.g., Fortran
COMMON blocks.

• All data values created by “new” operations are allocated in the
heap. Data values that are directly stored in local variables are
not, unless they appear free in a closure. Placing such variables
in the heap is a critically important idea introduced by Guy
Steele in the Rabbit compiler for Scheme. Why does Java
require free variables in closures to be final? So that they can
safely be copied into the closure (inner class) instance!

Runtimes for Modern Stack-based Languages
• Heap storage can be managed manually or

automatically.
• Manual management (C/C++) can be extremely

painful and error-prone. Even manual management
relies on automatic allocation (“new” operations). Is
“new” trivial? Once the virgin heap space is
exhausted, no!

• Fully automatic management (“garbage collection”)
requires run-time bookkeeping (which is cheap in a
well-designed system). The manager (garbage
collector) must be able to determine (or
conservatively estimate) which objects in the heap
are still accessible from the stack and the global data
area. When free space is exhausted, GC is triggered.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

