

Comp 411
Principles of Programming Languages

Lecture 5
Syntactic Interpreters

Corky Cartwright
Swarat Chaudhuri
August 31, 2011

A Syntactic Interpreter for LC
● Recall the context-free language LC from last lecture:

M :== x | n | (lambda (x) M) | (M M) | (+ M M)
A proper LC program is an LC expression M that is closed, i.e., contains no free
variables. An LC program is any LC expression.

● Recall the abstract syntax for LC in Scheme given in the last lecture:

 R = Var | Const | Proc | App | Add
 Var = (make-var Sym) ; variable uses are wrapped in make-var
 Const = (make-const Num)
 Proc = (make-proc Sym R) ; use raw symbol rather than Var
 App = (make-app R R)
 Add = (make-add R R)

where Sym and Num are Scheme symbols and numbers, respectively, and we have
defined the Scheme data types:

 (define-struct var (name))
 (define-struct const (number))
 (define-struct proc (param body))
 (define-struct app (rator rand))
 (define-struct add (left right))

Syntactic Interpretation

What does syntactic interpretation do?
• Reduce the AST for a complete program to a value.
• What is a value? A special AST representing a data

constant. In LC (a subset of Scheme), a value V is either a
number or a procedure:

 V ::= n | (lambda (x) M)

• What are the Scheme evaluation rules (from Comp
210/211) that are relevant to LC?

A Syntactic Interpreter for LC
Basic Rules of Evaluation
• Rule 1: For applications of the binary operator + to two arguments that are numeric

values, replace the application by the sum of the two arguments.
• Rule 2: For applications of a lambda-expression to a value, substitute the argument

for the parameter in the body, i.e.,

 ((lambda (x) M) V) → M[x := V]

where M[x := V] means M with all free occurrences of x replaced by V. This rule
is called beta-value reduction.

Observation: the definition of value has a major impact on evaluation
What happens if we define
 V :== n | (lambda (x) V)
Some evaluation strategies for the untyped lambda-calculus do this, but they have not

proven relevant to defining the semantics of real programming languages. Why?
What if we allow arguments in procedure application reductions that aren’t values.
Example:
 ((lambda (y) 5) ((lambda (x) (x x)) (lambda (x) (x x))))

This is a sensible choice in functional languages that prohibit side effects (the values of
bound variables and fields never change). Haskell does this.

Syntactic Interpreter for LC cont.
Combining evaluation rules:
• Given an LC expression, we evaluate it by repeatedly

applying the preceding rewrite rules until we get an
answer.

• What happens when we encounter an expression to which
more than one rule applies? In Core Scheme (the Comp
211 dialect) and LC, the leftmost rule always takes
priority.

• Other strategies are possible. Some “syntactic” (rewrite-
rule-based) semantics for complex languages define formal
syntactic rules (called evaluation contexts) to determine
which reduction is done first.

Gotcha's in Syntactic Semantics
• In Rule 2 (called “beta-reduction” in the λ-calculus and program semantics literature), we

confined substitution in the definition of M[x := V] to the free occurrences of x in M.
• If we had not confined substitution to free occurrences, the rule would have produced

strange results, destroying the meaning of bound variables in M.
• If we use Rule 2 to transform programs (replacing “equals by equals”), we must be

particularly careful in how we perform the substitution of V for x in M. If not, free variables
in V can be “captured” in replaced occurrences of x in M. Consider the following example:

 (lambda (y) x) [x := y]

If we replace all free occurrences of x by y, we get

 (lambda (y) y)

which is wrong! The occurrence of y in [x := y] is free. Presumably, it is bound
somewhere in the context surrounding

 (lambda (y) x) [x := y]

If we substitute y for the free occurrence of x in (lambda (y) x), it becomes bound by a
local definition of y. The solution is to rename the variable introduced in the local
definition of y as a fresh variable name, say z.

 (lambda (y) x) [x := y] → (lambda (z) y)

Safe Substitution
This revised substitution process (renaming local variables
that would otherwise capture free occurrences in the
expression being substituted) is called safe substitution.
The results produced by safe substitution are non-
deterministic in a trivial sense because the choices for the
new names of renamed local variables are arbitrary (as
long as they are fresh, i.e. distinct from existing variables
in the program text involved in the substitution). Hence,
 (lambda (y) x) [x := y] → (lambda (z) y)
 → (lambda (u) y)
 → (lambda (v) y)
 → ...

Lambda-Calculus Notation
The mathematical literature on the pure lambda calculus uses a
leaner (perhaps more human friendly) notation for lambda-
expressions. The syntax is:

 M :: = Var | (M M) | ( Var . M)

In applications and abstractions, parentheses may be elided if no
ambiguity results (assuming left associativity and maximal
expression extent—as in parsing JAM). When parentheses are
elided in applications, application associates to the left, i.e.,
 x . x y abbreviates (x . (x y))
 L M N abbreviates ((L M) N)

The pure lambda-calculus lacks primtive data values (constants). To
model programming languages we often add constants like numbers
and the addition function.

-Conversion (Variable Renaming)
The renaming of bound variables is an axiom (assumed
equation) of the -calculus:

 x . M → y . M[x:=y]
where y does not occur in M. Hence, -conversion does
not presume any notion of safe substitution as primitive.
Safe substitution can be defined using -conversion.

-conversion and -reduction are the fundamental
equations (laws) of the -calculus. Mathematicians often
do not directly define safe substitution. They simply
stipulate that -reduction is not allowed to capture bound
variables. Hence, an -conversion may sometimes be
necessary prior to a -reduction. These conversions are
typically assumed without comment.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

