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A Syntactic Interpreter for LC
● Recall the context-free language  LC from last lecture:

M :== x | n | (lambda (x) M) | (M M) | (+ M M)
A proper LC program is an LC expression M that is closed, i.e., contains no free 
variables. An LC program is any LC expression.

● Recall the  abstract syntax for LC in Scheme given in the last lecture:

 R = Var | Const | Proc | App | Add
 Var = (make-var Sym)       ; variable uses are wrapped in make-var
 Const = (make-const Num)
 Proc =  (make-proc Sym R)  ; use raw symbol rather than Var
 App =  (make-app R R) 
 Add = (make-add R R)

where Sym and Num are Scheme symbols and numbers, respectively, and we have 
defined the Scheme data types:

   (define-struct var (name))
   (define-struct const (number))
   (define-struct proc (param body))
   (define-struct app (rator rand))
   (define-struct add (left right))



  

Syntactic Interpretation

What does syntactic interpretation do?
• Reduce the AST for a complete program to a value.
• What is a value?  A special AST representing a data 

constant. In LC (a subset of Scheme), a value V is either a 
number or a procedure:

 V ::=  n  |  (lambda (x) M)

• What are the Scheme evaluation rules (from Comp 
210/211) that are relevant to LC?



  

A Syntactic Interpreter for LC
Basic Rules of Evaluation
• Rule 1: For applications of the binary operator + to two arguments that are numeric 

values, replace the application by the sum of the two arguments.
• Rule 2: For applications of a lambda-expression to a value, substitute the argument 

for  the parameter in the body, i.e.,

   ((lambda (x) M) V)  →   M[x := V]

where M[x := V] means M with all free occurrences of x replaced by V.  This rule 
is called beta-value reduction.

Observation: the definition of value has a major impact on evaluation
What happens if we define
    V :== n | (lambda (x) V)
Some evaluation strategies for the untyped lambda-calculus do this, but they have not 

proven relevant to defining the semantics of real programming languages.  Why?
What if we allow arguments in procedure application reductions that aren’t values. 
Example:  
   ((lambda (y) 5) ((lambda (x) (x x)) (lambda (x) (x x))))

This is a sensible choice in functional languages that prohibit side effects (the values of 
bound variables and fields never change).   Haskell does this.



  

Syntactic Interpreter for LC cont.
Combining evaluation rules:
• Given an LC expression, we evaluate it by repeatedly 

applying the preceding rewrite rules until we get an 
answer.

• What happens when we encounter an expression to which 
more than one rule applies? In Core Scheme (the Comp 
211 dialect) and LC, the leftmost rule always takes 
priority.

• Other strategies are possible.  Some “syntactic” (rewrite-
rule-based) semantics for complex languages define formal 
syntactic rules (called evaluation contexts) to determine 
which reduction is done first.



  

Gotcha's in Syntactic Semantics
• In Rule 2 (called “beta-reduction” in the λ-calculus and  program semantics literature), we 

confined substitution in the definition of  M[x := V] to the free occurrences of x in M.  
• If we had not confined substitution to free occurrences, the rule would have produced 

strange results, destroying the meaning of bound variables in M.   
• If we use Rule 2 to transform programs (replacing “equals by equals”), we must be 

particularly careful in how we perform the substitution of  V for x in M.  If not, free variables 
in V can be “captured” in replaced occurrences of x in M.  Consider the following example:

       (lambda (y) x) [x := y]
 
If we replace all free occurrences of x by y, we get

   (lambda (y) y)

which is wrong!   The occurrence of y in [x := y] is free.  Presumably, it is bound 
somewhere in the context surrounding

      (lambda (y) x) [x := y]

If we substitute y for the free occurrence of x in (lambda (y) x), it becomes bound by a 
local definition of y.  The solution is to rename the variable introduced in the local 
definition of y as a fresh variable name, say z.

            (lambda (y) x) [x := y]  →  (lambda (z) y) 



  

Safe Substitution
This revised substitution process (renaming local variables 
that would otherwise capture free occurrences in the 
expression being substituted) is called safe substitution.  
The results produced by safe substitution are non-
deterministic in a trivial sense because the choices for the 
new names of renamed local variables are arbitrary (as 
long as they are fresh, i.e. distinct from existing variables 
in the program text involved in the substitution).  Hence,
     (lambda (y) x) [x := y]  →  (lambda (z) y)
                           →  (lambda (u) y)
                           →  (lambda (v) y)
                           →  ...



  

Lambda-Calculus Notation
The mathematical literature on the pure lambda calculus uses a 
leaner (perhaps more human friendly) notation for lambda-
expressions.  The syntax is:

  M :: = Var | (M M) | ( Var . M)

In applications and abstractions, parentheses may be elided if no 
ambiguity results (assuming left associativity and maximal 
expression extent—as in parsing JAM).  When parentheses are 
elided in applications, application associates to the left, i.e.,
  x . x y  abbreviates   (x . (x y))
  L M N    abbreviates   ((L M) N)

The pure lambda-calculus lacks primtive data values (constants).  To 
model programming languages we often add constants like numbers 
and the addition function. 
   



  

-Conversion (Variable Renaming)
The renaming of bound variables is an axiom (assumed 
equation) of the -calculus:

     x . M  →  y . M[x:=y]
where y does not occur in M.  Hence, -conversion does 
not presume any notion of safe substitution as primitive.  
Safe substitution can be defined using -conversion.

-conversion and -reduction are the fundamental 
equations (laws) of the -calculus.  Mathematicians often 
do not directly define safe substitution.  They simply 
stipulate that -reduction is not allowed to capture bound 
variables.  Hence, an -conversion may sometimes be 
necessary prior to a -reduction. These conversions are 
typically assumed without comment.
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