

Comp 311
Principles of Programming Languages

Lecture 6
Implementing Syntactic Interpreters

Corky Cartwright
Swarat Chaudhuri
September 2, 2011

A Syntactic Evaluator
Now we can translate our rules into a program? Here is a sketch:
;; R → R ; an illegal program can return an AST (type R)
(define eval
 (lambda (M)
 (cond
 ((var? M) M) ; M is a free var (stuck!)
 ((or (const? M) (proc? M)) M) ; M is a value
 ((add? M) ; M has form (+ l r)
 (add (eval (add-left M)) (eval (add-right M))))
 (else ; M has form (N1 N2)
 (apply (eval (app-rator M)) (eval (app-rand M)))))))
;; Proc V → R
(define apply
 (lambda (a-proc a-value)
 (cond
 ((not (proc? A-proc)) ; ill-formed app
 (make-app a-proc a-value)) ; return stuck state
 (else (eval (subst a-value ; return substituted body
 (proc-param a-proc)
 (proc-body a-proc)))))))

Coding Substitution
;; V Sym R → R
(define subst
 (lambda (v x M)
 (cond
 [(var? M) (cond [(equal? (var-name M) x) v] [else M])]
 [(const? M) M]
 [(proc? M))
 (cond [(equal? x (proc-param M)) M]
 [else (make-proc (proc-param M)
 (subst v x (proc-body M)))])]
 [(add? M) (make-add (subst v x (add-left M))
 (subst v x (add-right M)))]
 [else ;; M is (N1 N2)
 (make-app (subst v x (app-rator M))
 (subst v x (app-rand M)))])))

Is subst safe? No! It is oblivious to free variables in M.

Exercise: Revise subst so that it is safe. Note that blind substitution works as
long as our top-level M is well-formed and contains no free variables. Why?

Comments on Syntactic Interpreter

Still need to define add. What does add do on non-const values?
• The key property of this evaluator is that it only manipulates

(abstract) syntax. It specifies the meaning of LC by mechanically
transforming the syntactic representation of a program.

This approach only assigns a satisfactory meaning to complete LC
programs, not to subtrees of complete programs. Counterexample:

 ((lambda (x) (+ x y)) 7)
If add mirrors syntactic evaluation, then it will return (+ 7 y).
Otherwise, it will generate a run-time error because y is not a value.

In a context where y is bound to 5, it returns 12; not (+ 7 y) or a
run-time error. Meaning of sub-expressions should be defined so that
meaning ⟦〛 is compositional, i.e.,

 ⟦ (c M1 … Mk)〛 = ⟦c〛 (⟦[M1〛, …, ⟦Mk〛)
Syntactic interpretation utterly fails in this regard.

Toward Semantic Interpretation
• From a software engineering perspective, what is wrong with our syntactic interpreter?

 How fast is subst? How can we do better?
 Avoid unnecessary substitutions by keeping a table of bindings.

;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = (listOf Binding)
;; R Env → V
(define eval
 (lambda (M env)
 (cond
 ((var? M) (lookup (var-name M) env))
 ((or (const? M) (proc? M)) M)
 ((add? M) ; M has form (+ l r)
 (add (eval (add-left M) env) (eval (add-right M) env)))
 (else ; M has form (N1 N2)
 (apply (eval (app-rator M) env) (eval (app-rand M) env) env)))))

;; Proc V Env → V
(define apply
 (lambda (a-proc a-value env)
 (eval (proc-body a-proc) (cons ((proc-param a-proc) a-value) env)))

Gotcha's in Semantic Interpretation
• What if a-proc contains free variables? Do we always get the

right answer (as defined by syntactic interpretation)?
• Illustration:
 (let [(a 5)
 (app-to-a (lambda (f) (f a))]
 (let [(a 10)]
 (+ a (app-to-a (lambda (x) x)))))

• What goes wrong?
• Think about how you might fix the problem

Illustration in Standard Scheme (RnRS)

(let* [(a 5)
 (app-to-a (lambda (f) (f a))]
 (let [(a 10)]
 (+ a (app-to-a (lambda (x) x)))))

What does a mean in the definition of app-to-a?

Scheme Binding (Scoping) Constructs
• In Scheme,

 (let [(v1 M1) … (vn Mn)] N)
abbreviates
 ((lambda (v1 … vn) N) M1 … Mn)

• Similarly,

 (let* [(v1 M1) … (vn Mn)] N)
abbreviates

 (let [(v1 M1)] (let … (let [(vn Mn)] N) …))
• And

 (letrec [(v1 M1) … (vn Mn)] N)
means v1 … vn are bound recursively, i.e., v1 … vn are in scope in

M1 … Mn as well as in N.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

