
Comp 411 – Homework 6: Removing Recursion and

Symbolic Variables from Jam

Corky Cartwright

Produced: December 20, 2011— Due: noon, Monday, November 21,
2011

Overview
Your assignment is to transform a dialect of untyped Jam to continuation

passing style (CPS) and to convert the Jam environment representation to
use static distance coordinates. The assignment should be done in three
separate phases: (i) modifying your interpreter for Step I of Assignment 5 by
restricting the interpreter to eager evaluation and splitting the recursive let
construct into separate recursive letrec and non-recursive let constructs;
(ii) modifying the parser to rename variables to eliminate the shadowing
of variables by nested variable declarations (map parameters, let bindings,
reclet bindings), and (iii) transforming Jam programs to CPS, leaving
the interpreter from phase (i) unchanged; and (iv) the conversion of Jam
program text to static distance coordinate form, which must be supported
by modifying the environment representation in the Jam interpreter.

This is a challenging assignment and will be worth 200 points instead of
100 points.

Phase I

As a first phase of this assignment, you will modify your Phase I parser
and interpreter from Assignment 5 to support only eager evaluation and split
recursive let into two constructs: (i) letrec, which is recursive let with
right hand sides limited to map constructions, and (ii) let, which is ordinary
non-recursive let abbreviating the application of a map to the right hand
sides. These modifications to the Jam language simplifies the transformation
required to implement Phase II.

In Java, the only public evaluation method in the Interpreter class
must be called eval() instead of the former name eagerEval() used in

1



2

Assignment 5.

Phase II

Part a: Modify your parser to prevent shadowing variable names by con-
verting the name of each Jam variable from x to x:d where d is the lexical
depth of the declaration of x. If x is free (not allowed in legal programs)
then it has lexical depth 0. If it occurs inside one level of lexical nesting, it
has lexical depth 1. For example, the program

(map x to x)(7)

becomes

(map x:1 to x:1)(7)

after renaming. Similarly,

id := map y to y; in id(1)

becomes

let id:1 := map y:1 to y:1; in id:1(1)

after renaming. The right-hand-sides of let bindings have the same nesting
level as the surrounding context. Recall the expansion of let in terms of
lambda.

The renamed variables be confused with existing variable names because
: is not a legal character in variable names read by the parser.

In Java, add a method

public AST unshadow()

in the Interpreter class that performs this transformation on the Jam AST
associated with this.

Since the unshadow operation is not bundled with either parsing or syn-
tax checking, you will subsequently be able to support both ordinary inter-
pretation (as performed in Phase I above) and interpretation after convert-
ing a program to CPS form.

The unshadowing transformation permits let constructs to be re-interpreted
as let* constructs without affecting program semantics. The correctness of
our rules for CPS transformation hinges on this identity.



3

Part b: You also need to modify your parser to expand & and | in terms
of if-then-else. In particular,

M & N --> if M then N else false
M | N --> if M then true else N

Otherwise, CPS conversion will treat & and | just like other binary oper-
ators and always force the evaluation of both arguments (as in call-by-value
evaluation of program-defined functions).

Revise unshadow to perform this transformation as well. Phase III

Write a postprocessor (function from abstract syntax to abstrat syntax)
for your parser that transforms a Phase I Jam program to equivalent CPS
form. Specifically, given a program M , your postprocessor will generate the
program Cps[map x to x,M ′] where M ′ is M converted to unshadowed
form and Cps is a binary function mapping Jam program text to Jam pro-
gram defined by the transformation rules given below. These rules are a
loosely based on the exposition in Friedman, et al., Chapter 8.

These rules presume that variables have been renamed to prevent “holes
in scope” (nested variables with the same name) as described in Phase II.
They will not work correctly on programs that shadow variable names with-
out Phase II being performed first.

For the purposes of this assignment, we will consider operator applica-
tions (both unary and binary) as syntactic sugar for applications of corre-
sponding primitive operations. Hence operator applications are treated just
like primitive applications.

In Java, formulate the CPS postprocessor as a method

public AST convertToCPS()

in your Interpreter class. These interfaces are important because we will
use them to test your code.

You must also provide new method/function names for performing in-
terpretation of the CPS’ed program. In Java, you must add a method

public JamVal cpsEval()

to the Interpreter class that converts the associated program to CPS and
then interprets the transformed program.

You can test that your implementation of the CPS transformation pre-
serves the meaning of programs in Java by comparing the results produced
by eval() and cpsEval().



4

To state the CPS transformation rules, we need to introduce a few tech-
nical definitions. Study them until your thoroughly understand them.

A Jam application E(E1, ..., En) is primitive if E is a primitive Jam
function. Recall that we are interpreting operator applications as syntactic
sugar for applications of corresponding primitive operations. So an applica-
tion is primitive iff the rator of the application is either a primitive function
or an operator. For example, the applications first(append(x,y)) and
square(x) * y are both primitive while the applications square(4) and
append(x,y) are not.

A Jam expression E is simple iff all applications except those nested
inside map constructions are primitive, i.e., have a primitive function or
operator as the rator. For example,

let x := first(a) * b * first(c);
Y := map f to let g := map z to f(z(z))) in g(g);

in cons(x, cons(Y, null))

and

x+(y*z)

are both simple. In contrast,

f(1)

and

let Y := map f to let g := map z to f(z(z))) in map x to (g(g))(x);
in Y(map fact to map n to if n=0 then 1 else n*fact(n-1))

are not simple because f is not primitive and Y) is not primitive.
The following rules define two syntactic tranformers (functions) on Jam

program text: the binary transformer Cps : Jam × Jam → Jam and the
unary transformer Rsh : Simp → Simp, where Jam is the set of Jam ex-
pressions and Simp is the set of simple Jam expressions (Rsh stands for
“reshape”). The binary transformer Cps[k, M ] takes a Jam expression k
denoting a unary function, and an unshadowed Jam expression M as in-
put and produces a non-recursive Jam expression with the same meaning as
k(M).

The unary transformer Rsh is a “help” function for Cps that take an un-
shadowed simple expression as input and adds a continuation parameter to
the map expressions and function constants embedded in simple expressions.
Rsh also adjusts applications of the arity primitive function to ignore the
added continuation argument.



5

In the following rules, S, S1, S2, ... denote simple Jam expressions; k, A,
B, C, E, E1, E2, ..., T denote arbitrary Jam expressions; x1, x2, ... denote
ordinary Jam identifiers, and v, v1, v2, ... denote fresh Jam identifiers that
do not appear in any other program text. The variable names x, y, and k
denote themselves.
Definition of Cps.

The following clauses define the textual tranformation Cps[k, M ]:

• If M is a simple Jam expression S:

Cps[k, S] ⇒ k(Rsh[S])

• If M is an application (map x1, ..., xn to B)(E1, ..., En), n > 0:

Cps[k, (map x1, ..., xn to B)(E1, ..., En)] ⇒ Cps[k, let x1 :=E1; ...; xn :=En; in B]

• If M is an application (map to B)(), n > 0:

Cps[k, (map to B)()] ⇒ Cps[k, B]

• If M is an application S(S1, ..., Sn), n >= 0:

Cps[k, S(S1, ..., Sn)] ⇒ Rsh[S](Rsh[S1], ...,Rsh[Sn], k)

• If M is an application S(E1, ..., En), n > 0:

Cps[k, S(E1, ..., En)] ⇒ Cps[k, let v1 :=E1; ... vn :=En; in S(v1, ..., vn)]

• If M is an application B(E1, ..., En), n >= 0 where B is not simple:

Cps[k, B(E1, ..., En)] ⇒ Cps[k, let v :=B; v1 :=E1; ... vn :=En; in v(v1, ..., vn)]

• If M is a conditional construction if S then A else C:

Cps[k, if S then A else C] ⇒ if Rsh[S] then Cps[k, A] else Cps[k, C]

• If M is a conditional construction if T then A else C:

Cps[k, if T then A else C] ⇒ Cps[k, let v := T in if v then A else C]

• If M is a block {E1; E2; ...; En}, n > 0:

Cps[k, {E1; E2; ...; En}] ⇒ Cps[k, (let v1 := E1; ...; vn := En; in vn]

• If M is let x1 :=S1; in B,n > 0:

Cps[k, let x1 :=S1; in B] ⇒ let x1 :=Rsh[S1]; in Cps[k, B]



6

• If M is let x1 :=S1; x2 :=E2; ... xn :=En; in B,n > 1:

Cps[k, let x1 :=S1; x2 :=E2; ... xn :=En; in B] ⇒

let x1 :=Rsh[S1]; in Cps[k, let x2 :=E2; ...; xn :=En; in B]

• If M is let x1 :=E1; ... xn :=En; in B,n > 0:

Cps[k, let x1 :=E1; ... xn :=En; in B] ⇒

Cps[map v to Cps[k, let x1 := v; ... xn :=En; in B], E1]

• If M is letrec p1 := map ... to E1; ...; pn := map ... to En; in B,n >
0:

Cps[k, letrec p1 := map ... to E1; ...; pn := map ... to En; in B] ⇒

letrec p1 := Rsh[map... to E1]; ...; pn := Rsh[map... to En]; in Cps[k, B]

Note: in any instantiation of the preceding rules where a let expression has
no bindings, the let expression should be collapsed to its body, i.e.

let in B ⇒ B

Definition of Rsh.
The helper transformer Rsh[S] is defined by the following rules:

• If S is a ground constant C (value that is not a map):

Rsh[C] ⇒ C

• If S is a variable x:
Rsh[x] ⇒ x

• If S is a primitive application arity(S1):

Rsh[arity(S1)] ⇒ arity(Rsh[S1])− 1

• If S is a primitive application f(S1, ..., Sn), n >= 0 where f is not
arity:

Rsh[f(S1, ..., Sn)] ⇒ f(Rsh[S1], ...,Rsh[Sn])

• If S is map x1, ..., xn to E:

Rsh[map x1, ..., xn to E] ⇒ map x1, ..., xn, v toCps[v, E]

• If S is the primitive function arity:

Rsh[arity] ⇒ map x,k to k(arity(x) - 1)



7

• If S is a unary primitive function f other than arity:
Rsh[f ] ⇒ map x,k to k(f(x))

• If S is a binary primitive function g:
Rsh[g] ⇒ map x,y,k to k(g(x,y))

• If S is a conditional construct if S1 then S2 else S3:
Rsh[if S1 then S2 else S3] ⇒ if Rsh[S1] then Rsh[S2] else Rsh[S3]

• If S is let x1 :=S1; ...; xn :=Sn; in S, n > 0:
Rsh[let x1 :=S1; ...; xn :=Sn; in S] ⇒

let x1 :=Rsh[S1]; ...; xn :=Rsh[Sn]; in Rsh[S]

• If S is letrec p1 := map ... to E1; ...; pn := map ... to En; in S, n >
0:

Rsh[letrec p1 := map ... to E1; ...; pn := map ... to En; in S] ⇒
letrec p1 := Rsh[map... toE1]; ...; pn := Rsh[map... toEn]; in Rsh[S]

• If S is a block {S1; ...; Sn}, n > 0:
Rsh[{S1; ...; Sn}] ⇒ {Rsh[S1]; ...; Rsh[Sn−1]; Rsh[Sn]}

For the purposes of testing your programs we require the following stan-
dardization. The top-level continuation must have the syntactic form

map x to x

using the variable name x. In some transformations, you must generate a
new variable name. For this purpose, use variable names of the form :k
where k is an integer. These name cannot be confused with the names of
variables that already exist in the program. The sequence of variable names
generated by your CPS tranformer must be :0, : 1, :2, ... so that your
CPS tranformer has exactly the same behavior as our solution. Note that
you must transform a program by making the leftmost possible reduction
given that match variables S and E can only match raw program text (any
embedded calls on Cps and Rsh must have already been reduced).

Phase IV

As the fourth part of the assignment, you will write another processor
for Jam abstract syntax that transforms conventional Jam abstract syntax
into static distance format. In Java, add a method



8

public AST convertToSD()

in the Interpreter class that performs this transformation on the Jam AST
associated with this.

You must also write a new interpreter for static distance format (sharing
as much existing code as possible) that represents environments as lists of
activation records where activation records are represented as arrays in Java.
In Java, you must add methods

public JamVal sdEval();
public JamVal sdCpsEval();

to the Interpreter class. The method sdEval() converts the program
associated with this to static distance format and then interprets it. The
method sdCpsEval() converts the program first to CPS and then to static
distance format and interprets the result.

Hint: In Java, it is tempting to try to refactor the AST composite hi-
erarchy into a generic composite hierarchy parameterized by the form of
variables (symbols or static distance coordinates) and environments (lists of
binding pairs or lists of activation records) so that the distinctions between
the two program representations are reflected in the typing of program text.
While such a refactoring is possible, it is massive since every AST class
(even including the constant classes) must be modified and every visitor
class that processes ASTs must be modified. It is much easier (albeit less
precise in the typing of program expressions) to simply add some new sub-
classes to the AST hierarchy that are static distance variants of the existing
AST classes. Of course, this code requires some type casts. Note that static
distance code in this representation is also conventional code since the static
distance information is added to the conventional representation (which still
has symbolic variable names).

Extra Credit (20 points): Supporting letcc

Extend the Jam source language to include the new construct

<exp> ::= ... | letcc x in M

The new construct letcc x in M binds the identifier x to the current
continuation, and evaluates M in the extended environment. A continuation
is a closure of one argument, reshaped to take an auxiliary continuation
argument (like all other closures after CPS) which it discards. Since contin-
uations are ordinary values, they can be stored in data structures, passed
as argments, and returned as values.



9

The letcc construct is only supported in the interpreters that perform
CPS conversion on the code. The conventional interpreters abort execution
with an error if they encounter a use of letcc.

To perform CPS conversion on program containing letcc, we extend
our rules for CPS conversion as follows.

First, a Jam expression E is simple iff all occurrences of the letcc con-
struct and non-primitive applications appear nested within¡ map construc-
tions.

Second, we add the following clause to the definition of the Cps syntax
transformer:

• If M is letcc x in B:

Cps[k, letcc x in B] ⇒ let x := map v, k1 to k(v) inCps[k, B]


