Comp 411

Principles of Programming Languages Lecture 11
The Semantics of Recursion II

Corky Cartwright

February 7, 2014

Recursive Definitions

- Given a Scott-domain D, we can write equations of the form:

$$
\mathbf{f} \stackrel{\text { waf }}{=} E_{f}
$$

where $\mathbf{E}_{\mathbf{f}}$ is an expression constructed from constants in \mathbf{D}, operations (continuous functions) on \mathbf{D}, and \mathbf{f}.

- Example: let \mathbf{D} be the domain of Jam values. Then
fact ${ }^{\underline{=}}$
map n to if $\mathrm{n}=0$ then 1 else n * fact(n - 1) is such an equation.
- Such equations are called recursive definitions.

Solutions to Recursion Equations

Given a recursion equation:

what is a solution? All of the constants and operations in \mathbf{E}_{f} are known except \mathbf{f}.

A solution is any function \mathbf{f} such that $\mathbf{f}=\mathbf{E}_{\mathbf{f}}$.
But there may be more than one solution. We want to select the "best" solution f^{*}. Note that f^{*} is an element of whatever domain D* corresponds to the type of $\mathbf{E}_{\mathbf{f}}$. In the most common case, it is $\mathbf{D} \rightarrow \mathbf{D}$, but it can be $\mathbf{D}, \mathbf{D} \rightarrow \mathbf{D}, \ldots, \mathbf{D}^{\mathbf{k}} \rightarrow \mathbf{D}, \ldots$. The best solution \mathbf{f}^{*} (which always exists and is unique and computable) is the least solution under the approximation ordering in D^{*}.

Constructing the Least Solution

How do we know that any solution exists to the equation $f=E_{f}$?
We will construct the least solution and prove it is a solution!
Since the domain $\mathbf{D} *$ for \mathbf{f} is a Scott-Domain, this domain has a least element $\perp_{D^{*}}$ that approximates every solution to the equation.

Now form the function $\mathbf{F}: \mathbf{D} * \rightarrow \mathbf{D}$ defined by

$$
F(f)=E_{f}
$$

or equivalently,

$$
F=\lambda f . E_{f}
$$

Consider the sequence $\mathbf{S}: \perp_{D}, F\left(\perp_{D}\right), F\left(F\left(\perp_{D}\right)\right), \ldots, F^{k}\left(\perp_{D}\right), \ldots$
Claim \mathbf{S} is an ascending chain (chain for short) in $\mathbf{D} * \rightarrow D^{*}$.
Proof. $\boldsymbol{b}^{\circ} \mathrm{t}_{*}<=\mathbf{F}\left(\mathbf{b o t}_{\mathrm{t}_{*}}\right)$ by the definition of $\mathrm{Bot}_{\mathrm{t}_{*}}$. If $\mathbf{M}<=\mathbf{N}$, then $\mathbf{F}(\mathrm{M})<=$
$F(N)$ by monotonicity. Hence, $F^{k}\left(\boldsymbol{b}_{\boldsymbol{o t}}^{0}\right)<=F^{k+1}\left(\boldsymbol{b}_{\mathrm{o}} \mathrm{t}_{0}\right)$ for all k. Q.E.D.
Claim: \boldsymbol{S} has a least upper bound \boldsymbol{f}^{*}
Proof. Trivial. \mathbf{S} is a chain in D^{*} and hence must have a least upper bound because D^{*} is a Scott-Domain.

Proving \mathbf{f}^{*} is a fixed point of F

Must show: $F\left(f^{*}\right)=f^{*}$ where $F=\boldsymbol{\lambda} \mathbf{f} . E \quad{ }_{f}$.
Claim: By definition $f^{*}=\cup F^{k}\left(\perp_{D_{*}}\right)$. Since F is continuous

$$
\begin{aligned}
\mathrm{F}\left(\mathrm{f}^{*}\right) & =\mathrm{F}\left(\cup \mathrm{~F}^{k}\left(\perp_{\mathrm{D}^{*}}\right)\right) & & \\
& =\cup \mathbf{F}^{\mathrm{k}+1}\left(\perp_{\mathrm{D}^{*}}\right) & & (\text { by continuity }) \\
& =\cup \mathbf{F}^{k}\left(\perp_{\mathrm{D}^{*}}\right) & & \left(\text { since } \perp_{\mathrm{D}^{*}} \leq \mathrm{F}\left(\perp_{\mathrm{D}^{*}}\right)\right) \\
& =\mathrm{f}^{*} & &
\end{aligned}
$$

Q.E.D.

Note: all of the steps in the preceding proof are trivial except for the step justified by continuity.

Examples

Look at factorial in detail using DrRacket stepper.

How Can We Compute f^{*} Given F?

Need to construct $\mathbf{F}^{\circ}(\perp)$ from \mathbf{F}. Let

$$
Y(F)=f^{*}=F \infty^{\infty}(\perp) .
$$

Can we write code for \mathbf{Y} ?
Idea: use syntactic trick in Ω to build a potentially infinite stack of Fs.

- Preliminary attempt:

$$
(\lambda x . F(x \quad x))(\lambda x . F(x \quad x))
$$

- Reduces to (in one step):

- Reduces to (in k steps):
$F^{k}((\lambda x . F(x \quad x))(\lambda x . F(x \quad x)))$

What Is the Code for \mathbf{Y} ?

$\lambda F .(\lambda x . F(x \quad x))(\lambda x . F(x \quad x))$

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No!
- Why not? What about divergence? Assume G is a λ-expression defining a functional like FACT ($\lambda F .(\lambda x . F(x \quad x))(\lambda x . F(x \quad x))) G$ $=G((\lambda x . G(x \quad x))(\lambda x . G(x \quad x)))$
= ... (diverging)

What If We Use Call-by-name?

By assumption G must have the form $\lambda f . \lambda n . m$

$$
\begin{aligned}
& =G((\lambda x \cdot G(x \quad x))(\lambda x \cdot G(x \times))) \\
& =(\lambda f . \lambda n \cdot M)((\lambda x, G(x \quad x))(\lambda x, G(x \quad x))) \\
& =\lambda \mathrm{n} \cdot \mathrm{M}[\mathrm{x}:=(\lambda \mathrm{x} . \mathrm{G}(\mathrm{x} \mathbf{x}))(\lambda \mathbf{x} . \mathrm{G}(\mathrm{x} \mathbf{x}))]
\end{aligned}
$$

If the evaluation M of does not require evaluating an occurrence of f, then \mathbf{x} is not evaluated. Otherwise, the binding of \mathbf{x} is unwound only as many times as required to get to the base case in the definition $\quad \mathrm{f}=$ λn. M.

Exercise: how can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam? Hint: if M is a divergent term denoting a unary function $\lambda \mathbf{x} . \mathbf{M x}$ is an "equivalent" term that is not divergent! (As a concrete example, assume that \mathbf{M} is the term Ω.)

