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Recursive Definitions

• Given a Scott-domain D, we can write equations of 
the form:
      f  ≞  E

f

where Ef is an expression constructed from constants 

in D, operations (continuous functions) on D, and f.

• Example: let D be the domain of Jam values. Then
   fact ≞ 
       map n to if n = 0 then 1 else n * fact(n - 1)

is such an equation. 

• Such equations are called recursive definitions.



  

Solutions to Recursion Equations
Given a recursion equation:
   f  ≞  E

f
  

what is a solution?  All of the constants and operations in E
f 
are 

known except f.  

A solution is any function  f  such that f = E
f
.
    

      

But there may be more than one solution.  We want to select the 
“best” solution f*.   Note that f* is an element of whatever domain  
D* corresponds to the type of  E

f
.   In the most common case, it is  

D→D, but it can be D, D→D, . . . , Dk→D, . . . .  The best solution f* (which
always exists and is unique and computable) is the least solution 
under the approximation ordering in D*.   

  



  

Constructing the Least Solution
How do we know that any solution exists to the equation f = E

f 
?

We will construct the least solution and prove it is a solution!
Since the domain D * for  f  is a Scott-Domain, this domain has a least element
⊥
D* 

that approximates every solution to the equation.
 
 

  

 

      

Now form the function  F: D *  → D * defined by   
    F(f) =  E

f

or equivalently, 
    F = f.λ E

f
 

Consider the sequence S:   ⊥
D
, F(⊥

D
),

   
F(F(⊥

D
)), . . . , Fk(⊥

D
), . . .

Claim  S is an ascending chain (chain for short) in D *  → D *.  

,

 

Proof. botD * <=  F(botD *) by the definition of BotD * .  If  M <= N,  then  F(M )  <=  

F(N ) by monotonicity.  Hence,  Fk(bot
D
)  <=  F k+ 1(bot

D
) for all k.  Q.E.D.

Claim: S has a least upper bound f* 

Proof.  Trivial.  S is a chain in D* and hence must have a least upper bound because D* is a 
Scott-Domain.



  

Proving f* is a fixed point of  F

Must show:   F(f*) =  f*
   
where  F =  λ f . E f.

Claim:  By definition   f*
  
=  ⋃ Fk(⊥

D *
) .    Since F is continuous

    F(f*) =  F(  Fk(⊥
D*
)) 

              =  Fk+ 1(⊥
D*
)      (by continuity)

              =  Fk(⊥
D*
)       (since ⊥ D * ≤ F(⊥

D*
) )

                 =  f*

Q.E.D. 

Note: all of the steps in the preceding proof are trivial except for the step 
justified by continuity.



  

Examples

Look at factorial in detail using DrRacket stepper.



  

How Can We Compute f* Given F?
Need to construct  F∞(⊥ ) from F. Let 
Y(F) =  f* =  F ∞(⊥ ).

Can we write code for Y?

Idea: use syntactic trick in  to build a potentially infinite 
stack of Fs.  

• Preliminary attempt:

  (x. F(x x)) ( x. F(x x))
• Reduces to (in one step):
F ((x. F(x x)) (x. F(x x)))

• Reduces to (in k steps):
Fk ((x. F(x x)) (x. F(x x)))



  

What Is the Code for Y?

  F. (x. F(x x))(x. F(x x))
• Does this work for Scheme (or Java with an 

appropriate encoding of functions as anonymous 
inner classes)?   No!

• Why not?  What about divergence?  Assume G
is a -expression defining a functional like FACT

F. ( ( x. F(x x))( x. F(x x)))G
= G((x. G(x x))(x. G(x x)))
= … (diverging)



  

What If We Use Call-by-name?
By assumption G must have the form   f.  n . M

   F. ( (x. F(x x))(x. F(x x))) G
 = G ((x. G(x x))(x. G(x x)))
=   f. (  n . M) (( x. G(x x))(x. G(x x)))
 =   n .M[x:=(x.G(x x))(x.G(x x))]

If the evaluation M of does not require evaluating an occurrence of f , then 
x  is not evaluated.  Otherwise, the binding of x is unwound only as 
many times as required to get to the base case in the definition  f = 

n . M.

Exercise: how can we workaround this problem to create a version of the 
Y operator that works for call-by-value Scheme and Jam?  Hint: if M is a 
divergent term denoting a unary function x.Mx is an “equivalent” 
term that is not divergent!  (As a concrete example, assume that  M is the 
term .)
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