Comp 411 Principles of Programming Languages Lecture 11 The Semantics of Recursion II

> Corky Cartwright February 7, 2014

Recursive Definitions

• Given a Scott-domain D, we can write equations of the form:

where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and f.

- Example: let D be the domain of Jam values. Then
 fact ≝
 map n to if n = 0 then 1 else n * fact(n 1)
 is such an equation.
- Such equations are called *recursive definitions*.

Solutions to Recursion Equations

Given a recursion equation:

 $\mathbf{f} \cong \mathbf{E}_{\mathbf{f}}$ what is a solution? All of the constants and operations in $\mathbf{E}_{\mathbf{f}}$ are known except \mathbf{f} .

A solution is any function **f** such that **f** = E_{f} .

But there may be more than one solution. We want to select the "best" solution f^* . Note that f^* is an element of whatever domain D^* corresponds to the type of E_f . In the most common case, it is $D \rightarrow D$, but it can be $D, D \rightarrow D, \dots, D^k \rightarrow D, \dots$ The best solution f^* (which always exists and is unique and *computable*) is the *least* solution under the approximation ordering in D^* .

Constructing the Least Solution

How do we know that any solution exists to the equation $\mathbf{f} = \mathbf{E}_{\mathbf{f}}$? We will construct the least solution and prove it is a solution! Since the domain $\mathbf{D} *$ for \mathbf{f} is a Scott-Domain, this domain has a least element $\mathbf{L}_{\mathbf{p}*}$ that approximates every solution to the equation.

Now form the function F: D* → D* defined by F(f) = E_f or equivalently, F = λf.E_f Consider the sequence S: ⊥_p, F(⊥_p), F(F(⊥_p)),..., F^k(⊥_p),... Claim S is an ascending chain (chain for short) in D* → D*. Proof. bot_{p*} <= F(bot_{p*}) by the definition of Bot_{p*}. If M <= N, then F(M) <= F(N) by monotonicity. Hence, F^k(bot_p) <= F^{k+1}(bot_p) for all k. Q.E.D. Claim: S has a least upper bound f* Proof. Trivial. S is a chain in D* and hence must have a least upper bound because D* is a

Scott-Domain.

Proving **f*** is a fixed point of **F**

Must show: $F(f^*) = f^*$ where $F = \lambda f \cdot E_{f^*}$. Claim: By definition $f^* = \bigcup F^k(\bot_{D^*})$. Since F is continuous

$$F(f^*) = F(\bigcup F^{k}(\bot_{D^*}))$$

$$= \bigcup F^{k+1}(\bot_{D^*}) \qquad (by \ continuity)$$

$$= \bigcup F^{k}(\bot_{D^*}) \qquad (since \bot_{D^*} \leq F(\bot_{D^*}))$$

$$= f^*$$
Q.E.D.

Note: all of the steps in the preceding proof are trivial except for the step justified by continuity.

Examples

Look at factorial in detail using DrRacket stepper.

How Can We Compute **f*** Given **F**?

Need to construct $F^{\infty}(\bot)$ from F. Let $Y(F) = f^* = F \quad \infty (\bot)$.

Can we write code for **Y**?

Idea: use syntactic trick in Ω to build a potentially infinite stack of Fs.

• Preliminary attempt:

(λx. F(x x)) (λx. F(x x))

- Reduces to (in one step):
 F ((λx. F(x x)) (λx. F(x x)))
- Reduces to (in k steps):
 F^k ((λx. F(x x)) (λx. F(x x)))

What Is the Code for Y?

λF. (λx. F(x x))(λx. F(x x))

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No!
- Why not? What about divergence? Assume **G** is a λ -expression defining a functional like **FACT**

 $(\lambda F.(\lambda x. F(x x))(\lambda x. F(x x)))G$ = G((\lambda x. G(x x))(\lambda x. G(x x))) = ... (diverging)

What If We Use Call-by-name?

By assumption **G** must have the form $\lambda f.\lambda n$. M

 $\begin{array}{ll} (\lambda \ \mathbf{F}. & (\lambda \mathbf{x}. \ \mathbf{F}(\mathbf{x} \ \mathbf{x})) & (\lambda \mathbf{x}. \ \mathbf{F}(\mathbf{x} \ \mathbf{x})) & \mathbf{G} \\ = \ \mathbf{G} & ((\lambda \mathbf{x}. \ \mathbf{G}(\mathbf{x} \ \mathbf{x})) & (\lambda \mathbf{x}. \ \mathbf{G}(\mathbf{x} \ \mathbf{x}))) \\ = & (\lambda \ \mathbf{f}. \ \lambda \ \mathbf{n} \ . \ \mathbf{M}) & ((\lambda \mathbf{x}. \ \mathbf{G}(\mathbf{x} \ \mathbf{x})) & (\lambda \mathbf{x}. \ \mathbf{G}(\mathbf{x} \ \mathbf{x}))) \\ = & \lambda \ \mathbf{n} \ . \mathbf{M} [\mathbf{x} := & (\lambda \mathbf{x}.\mathbf{G}(\mathbf{x} \ \mathbf{x})) & (\lambda \mathbf{x}.\mathbf{G}(\mathbf{x} \ \mathbf{x}))] \end{array}$

If the evaluation M of does not require evaluating an occurrence of f, then x is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f = \lambda n$. M.

Exercise: how can we workaround this problem to create a version of the \mathbf{Y} operator that works for call-by-value Scheme and Jam? Hint: if \mathbf{M} is a divergent term denoting a unary function $\lambda \mathbf{x} \cdot \mathbf{M} \mathbf{x}$ is an "equivalent" term that is not divergent! (As a concrete example, assume that \mathbf{M} is the term Ω .)