
  

Comp 411
Principles of Programming Languages

Lecture 12
The Semantics of Recursion III & Loose 

Ends

Corky Cartwright

February 12, 2014



  

Call-by-name vs. Call-by-value 
Fixed-Point Operators
Given a recursive definition in a call-by-value language

      f  ≞  E
f

where E
f 
is an expression constructed from constants in the base

language and f.  What does it mean?

•
Example: let D be the domain of Scheme values. Then the base
operations are continuous functions on D and

   fact ≞ 
       map n to if n = 0 then 1 else n * fact(n - 1)

is a recursive definition of a function on D .

In a call-by-name language (map n to … is interpreted using 
call-by-name), the meaning of fact is    

   Y(map f to E
f
)

What if map (-abstraction) has call-by-value semantics?

Given a recursive definition in a call-by-value languageGiven a recursive definition in a call-by-value language



  

Defining Y in a Call-by-value Language
We want to define Y

v
, a call-by-value variant of  Y.

Key trick: use (eta)-conversion to delay the evaluation.
In the mathematical literature on the -calculus, -
conversion is often assumed as an axiom.  In models
of the pure -calculus, it typically holds.   
Definition: -conversion is the following equation: 
    M = x . Mx 

where x is not free in M.  If the -abstraction used in the 
definition of Y has call-by-value semantics, then given
the functional F corresponding to recursive function 
definition, the computation YF diverges.  We can prevent
this from happening by -converting both occurrences of
F(x x) within Y. 



i

  

What Is the Code for Yv?

F. x.(y.(F(x x))y)(y.(F(x x))y)

• Does this work for Scheme (or Java with an appropriate encoding of 
functions as anonymous inner classes)?  Yes!

• Let G be some functional f.M , like FACT, for a recursive function
definition.  G and M are values (-expressions).  Then   

Y
v
G = x. (y.(G(x x))y)(y.(G(x x))y) =    

y. (G((y.(G(x x))y) (y.(G(x x))y)) y
is a value.

• Hence,  G(Y
v
G) = ( f.M) (Y

v
G) = M[f:=Y

v
G], which is a value.  

• It is straighforward to prove (using conversion rules) that
  
Y
v
G = G(Y

v
G)

  



  

Loose Ends

• Meta-errors

• Read the notes! 

• rec-let (in notes)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

