Comp 411

Principles of Programming Languages Lecture 12
The Semantics of Recursion III \& Loose Ends

Corky Cartwright
February 12, 2014

Call-by-name vs. Call-by-value Fixed-Point Operators

Given a recursive definition in a call-by-value language

$$
f \stackrel{\text { 些 }}{=} E_{f}
$$

where $\mathbf{E}_{\boldsymbol{f}}$ is an expression constructed from constants in the base language and \mathbf{f}. What does it mean?
Example: let \mathbf{D} be the domain of Scheme values. Then the base operations are continuous functions on \mathbf{D} and
fact

$$
\text { map } n \text { to if } n=0 \text { then } 1 \text { else } n * \operatorname{fact}(n-1)
$$

is a recursive definition of a function on \mathbf{D}.
In a call-by-name language (map n to ... is interpreted using call-by-name), the meaning of fact is

$$
Y\left(\text { map } f \text { to } E_{f}\right)
$$

What if map ($\boldsymbol{\lambda}$-abstraction) has call-by-value semantics?

Defining \mathbf{Y} in a Call-by-value Language

We want to define \mathbf{Y}_{v}, a call-by-value variant of \mathbf{Y}. Key trick: use $\eta($ eta $)$-conversion to delay the evaluation. In the mathematical literature on the λ-calculus, η^{-} conversion is often assumed as an axiom. In models of the pure λ-calculus, it typically holds.
Definition: η-conversion is the following equation:

$$
M=\lambda x \cdot M x
$$

where \mathbf{x} is not free in M. If the λ-abstraction used in the definition of \mathbf{Y} has call-by-value semantics, then given the functional \mathbf{F} corresponding to recursive function definition, the computation YF diverges. We can prevent this from happening by η-converting both occurrences of $F(x \quad x)$ within Y.

What Is the Code for Y_{v} ?

$\lambda F . \lambda x .(\lambda y .(F(x \quad x)) y)(\lambda y .(F(x \quad x)) y)$

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!
- Let \mathbf{G} be some functional $\lambda \mathbf{f} . \mathbf{M}$, like FACT, for a recursive function definition. \mathbf{G} and \mathbf{M} are values (λ-expressions). Then $Y_{v} G=\lambda x \cdot(\lambda y \cdot(G(x x)) y)(\lambda y \cdot(G(x x)) y)=$
$\lambda y \cdot(G((\lambda y \cdot(G(x x)) y)(\lambda y \cdot(G(x x)) y)) y$ is a value.
- Hence, $G\left(Y_{v} G\right)=(\lambda f . M)\left(Y_{v} G\right)=M\left[f:=Y_{v} G\right]$, which is a value.
- It is straighforward to prove (using conversion rules) that

$$
Y_{\mathrm{v}} \mathrm{G}=\mathrm{G}\left(\mathrm{Y}_{\mathrm{v}} \mathrm{G}\right)
$$

Loose Ends

- Meta-errors
- Read the notes!
- rec-let (in notes)

