

Comp 411
Principles of Programming Languages

Lecture 13
The Semantics of Recursive Let

Corky Cartwright
February 14, 2014

The Semantics of Recursive Binding
 Let's add a recursive binding mechanism (akin to let) to LC where we

restrict right-hand sides to lambda expressions.
 The Scheme code for the AST is:

(define-struct rec-let (lhs ; variable
 rhs ; required to be a lambda-expression
 body))

where lhs is the new local variable, rhs is the lambda-expression
defining the value of the new variable, and body is an expression that
can use the new local variable. The new variable lhs is visible
in both rhs and body.

The code for it in the interpreter might look like:
((rec-let? M) ... (MEval (rec-let-body M)
 (extend env
 (rec-let-lhs M)
 (make-closure (rec-let-rhs M) <E>)))

Problem: how should <E> expand into code? The environment should be
(extend ...) above.

How Can We Construct This Circular Environment?

Let's treat environments abstractly.

We need to build an environment E such that
E = (extend env

 (rec-let-lhs M)
 (make-closure (rec-let-rhs M) E)))

What is wrong with the code
(define E (extend env

 (rec-let-lhs M)

 (make-closure (rec-let-rhs M) E)))

Can We Find a Representation That Works?

Slogan: functions are the ultimate lazy data structures. But they are completely opaque; the
only primitive operation on functions is application.

Unfortunately, even the function representation of environments cannot salvage the
preceding environment definition because it a call-by-value language always evaluates the
right-hand-side of define and the arguments of function calls. We need to tweak our code
so that the circular reference to the new environment is embedded inside a lambda. The
following revision of our eval clause works:
 ((rec-let? M) ... (MEval (rec-let-body M)

 (rec-extend env (rec-let-lhs M) (rec-let-rhs M)))

where
 (define rec-extend

 (lambda (env var rhs)

 (local

 [(define new-env

 (lambda (v) (if (equal? v var) (make-closure rhs new-env) (env v))))]

 new-env)))

OO Representations for Environments

OO interfaces can be used to add whatever structure is
appropriate. Hence, additional methods such as printing, equality
testing (not an issue in our interpreters) and iteration (non
currently an issue in our interpreters) can easily be included.
Moreover, deferred evaluation can be hidden (if desired) by the
interface. For example, a Binding interface might have eager
(call-by-value) and lazy (call-by-name) implementing subclasses
or even a single implementation class with constructors
corresponding to eager and lazy evaluation.

On the other hand, poorly designed OO interfaces can be just as
opaque as functions. Consider the standard command pattern
interface which has only one method (command invocation).

Question to Ponder

• Can we eliminate lambda if we include
the right functional constants
(combinators) in our language?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

