
Comp 411
Principles of Programming Languages

Lecture 21
Extending the Typed Lambda Calculus

Corky Cartwright
March 17, 2014

Accomodating Standard Ground Types

Any realistic statically typed function language includes ground types
like bool and int (and many more such as char and float).

Hence, the definition of types (type expressions) looks like:

 :: = int | bool | ... |

and the base environment (which is empty in the simply
typed lambda calculus) contains types for all of the primitive
functions and operators. (We interpret operators as
abbreviated syntax for conventional function applications.)

How Do We Type Functional Constructs?
Examples:
 Conditional expressions
 New algebraic (inductively defined) data types
 Recursive let

General answer:
(i) for each new syntactic construct like conditionals, we introduce a
new rule;
(ii) for each new form of data (which only requires adding new
constants [including functions] to the languge), we simply augment the
set of type constructors by the new type constructor (e.g. int-list)
and augment the contents of the base type environment by the new
constants and their types.

Let's look at each example in our list above.

Typing Conditional Expressions

Note: if conditional expressions are simply written as applications of a
ternary if operator, then all we need to do is add if to the set of
constant symbols and the type of if to the base type environment
(assuming our typing framework is polymorphic which we will explain
later). In fact, our new rule for the if construct simply codifies the
same typing constraints (but does not introduce a new constant
symbol).

Our conditional expressions presume the existence of a bool type

 | B:bool; |M:; |N:

 if B then M else N

Typing New Forms of Data

Assume we define some new form of data in a program. In structurally
typed programming languages, all data values have a unique type.
Hence, when a new union type is introduced, all values of that type
must be disjoint from all existing types. This invariant is maintained
by forcing all of the components of a new union type to be tagged.
This data construction is called a discriminated union.

Example: binary trees

 BT :: = leaf(int) | make-BT(BT, BT)

In ML-like languages, new forms of data are introduced in datatype
declarations which have an abstract syntax similar to our example. (In
ML, the names of accessors (selectors) are implicit because
pattern-matching notation is used to extract the fields of constructed
data objects.

Typing New Forms of Data cont.
Given
 BT :: = make-leaf(int) | make-BT(BT, BT)
we augment the set of type expressions by the type BT and the base
typing environment by the declarations:
 make-leaf: int BT→
 make-BT: BT x BT BT→
 leaf-1: BT int→
 BT-1: BT BT→
 BT-2: BT BT→
assuming that we use the name leaf-1 for the accessor for
make-leaf and the names BT-1 and BT-2 for the accessors for
make-BT.
In ML-like languages, data type definitions are typically lexically
scoped so datatype statements have an abstract syntax like let with
an explicit body which is the scope of the definition. We will ignore
scoping for data definitions and fix the data types for any program that
we consider. (In Java, data definitions, do not have scope. Visibility is
an administrative notion not a semantic one.)

Typing Let and Recursive Let

The typing rule for let is simply an abbreviation for
appropriately combining the abstraction and
application rules:

 M:;,x: N:
let rule)
 let x::= M in N :

The corresponding rule for recursive let:

,x: M:;,x: N:
reclet rule)
 let x::= M in N :
differs only in one small (but very important!) detail.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

