
Comp 411
Principles of Programming Languages

Lecture 22
Polymorphic Types

Corky Cartwright
March 19, 2014

A Fatal Weakness in Simple Structural Typing

Structural similar types like list-of-int and list-of-bool are
completely separate. Standard list operations that do not depend on the
element type must be rewritten for every different element type. There
are no common abstractions connecting list-of-int and
list-of-bool because they are disjoint types like int and bool.

The solution is to introduce type parameterization (polymorphism) into
the data domain and the corresponding type system. Instead of
defining

 int-list :: = unit() | cons(int, int-list)

 bool-list :: = unit() | cons(bool, bool-list)
 ...
we define a single parameterized form of list:

 list T :: = unit() | cons(T, list T)

What Types Correspond to Parametric Data?

In the data definition:

 list T :: = unit() | cons(T, list T)
what are the types of data operations like unit, cons, and the
corresponding accessors? We need to introduce the notion of type
schemes. A type scheme has syntax
 ∀α1 · · · αn .
where α1, ..., αn are type variables, and is a conventional type that

may be expressed in terms of α1, ..., αn. The types of the data

operations in our example are:
 unit: ∀α (→ list α)
 cons: ∀α (α x list α list → α)
 cons-1: ∀α (list α → α)
 cons-2: ∀α (list α list → α)

How Are Type Schemes Used in Inference?
Two Options:
I. First option: explicit polymorphism. We add explicit type
abstraction and application to the programming language.

M :: = V:. M | (M M) | V | T. M | (M
 :: = D | (| ∀T

where V is the set of vars and T is the set of type vars

Typing rules:

 Fun abstraction, application as before
 M:not free in M: ∀

 .M: ∀ (M :

Called the polymorphic -calculus or System F. Clumsy in
practice. Influenced Java 5 type system.

Implicit Polymorphism
II. Second option for interpreting type schemes.
(i) We restrict the body of a type scheme to an ordinary
(non-schematic) type. Hence, ∀ can only appear at the
top-level in a type. We implicitly close top-level types.
(ii) We make no changes to the programming language,
which looks like an extension of the untyped
lambda-calculus.
Typing rules same as ext typed lambda calculus, except

x: M:

 x.M:
Extra axiom: x: ∀T Sx:S'
where S' is any substitution instance of S (replacing x).

Implicit Polymorphism cont.

Different instantiations of same type scheme axiom:
x: T(T∀ →T)x: int→int
x: ∀T(T→T)x: (int→int) → (int→int)
The preceding system enables us to use primitive
operations with schematic types because the types of
primitive operations are built into the base environment,
but how do we define new polymorphic operations? We
need to revise our language so that let and reclet introduce
polymorphic operations!

Defining Polymorphic Functions

The following polymorphic let construct was Milner's greatest insight
in devising ML. Consider the Jam program
let id := map x to x; in (id(id))(4)
If we interpret let as before, this program is untypable because id is
used two different ways: as the identity function for type int→int
and for type int.
But we can revise (liberalize) our typing rule for let

 M :x: close(| N :
non-rec let poly rule)
 let x := M in N :

where close(means find all of the free type variables α1, ..., αn in
 that do not appear in and generate ∀α1, ..., αn

Type Reconstruction
Implicit polymorphism is far more important in practice than
explicit polymorphism because the types in implicitly typed
program can easily be reconstructed if they are erased. (This
process is often called “type inference” but we will use the
term “reconstruction” instead of “inference” because we
want to use the term “inference” to refer to formally proving
programs are typable using typing rules.)
How does type reconstruction work? Build the type
inference tree for a program using the typing rules with type
variables for the types of all lambda variables. To make this
tree a valid proof tree, certain equality relationships must
hold between type expressions (these equality constraints
appear in the statement of the rules). Generate the list of
equality constraints and solve them (using unification).
This reconstruction process is algorithmic!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

