
Comp 411
Principles of Programming Languages

Lecture 26
Explaining letcc and error

Corky Cartwright
March 31, 2014

Continuations and Evaluation Contexts
One of our goals is to produce a tail-recursive
interpreter, which can serve as a guide to implementing
an interpreter in machine code or writing a compiler to
translate source programs to machine code.
To recap our discussion of CPS, during the evaluation
of a program, every phrase is surrounded by some
computation that is waiting to be performed (and,
typically, that depends on the value of this phrase). In a
rewrite-rule semantics, the program text for the
remaining computation is simply the surrounding text; it
is called an evaluation context. Turning the meaning of
this evaluation context into a program function is the act
of making the continuation explicit. This process is
called reification.

An Example of Reification

For instance in
(+ (* 12 3) (- 2 23))
the evaluation context of the first sub-
expression (assuming it is evaluated first) is
(+ _ (- 2 23))
(where we pronounce _ as ``hole''), so the
program function corresponding to this context
is
(lambda (x) (+ x (- 2 23)))

A CPSed Interpreter for LC

Let us consider our interpreter for LC:
(define Eval
 (lambda (M env)
 (cond ((var? M) (lookup M env))
 ((lam? M) (make-closure M env))
 ((app? M)
 (Apply (Eval (app-rator M) env)
 (Eval (app-rand M) env)))
 ((add? M) ...)
 ...)))
In this interpreter, we both create new implicit continuations
(growing the stack) and use implicit continuations (returning
into the stack). New implicit continuations are created in the
code for applications. The other two clauses shown use the
current implicit continuation by returning a value.

A CPSed Interpreter for LC II
We now use the standard technique for transforming Scheme
code to transform the interpreter into CPS, making implicit
continuations explicit:

(define Eval/k
 (lambda (M env k)
 (cond ((var? M) (k (lookup M env)))
 ((lam? M) (k (make-closure M env)))
 ((app? M)
 (Eval/k (app-rator M)
 env
 (lambda (rator-v)
 (Eval/k (app-rand M)
 env
 (lambda (rand-v)

 (Apply/k rator-v rand-v k))))))
 ...)))

A CPSed Interpreter for LC III
Similarly
(define Apply
 (lambda (f a)
 (cond ((closure? f)
 (Eval (body-of f)
 (extend (env-of f) (param-of f) a)))
 (else ...))))
becomes
(define Apply/k
 (lambda (f a k)
 (cond ((closure? f)
 (Eval/k (body-of f)

 (extend (env-of f) (param-of f) a) k))
 (else ...))))
where extend is treated as a primitive operation like body-of.
Note that the continuations for the two recursive calls on Eval
in original interpreter are different. Why?

Explaining error in Scheme code
We intentionally left the fall-through case of the cond expressions in
the cond procedures empty (which can generate meta-errors).
However, there should be a call to error in that slot. In the CPSed
form, we can return an error without relying on an error-throwing
mechanism in the metalanguage!
(define-struct error (msg))
(define Apply/k
 (lambda (f a k)
 (cond ((closure? f)
 (Eval/k (body-of f)

 (extend (env-of f) (param-of f) a) k))
 (else
 (make-error “Attempted to apply non-closure”))))
Note that the error clause discards the continuation k. We
could also include a similar error clause in Eval/k.

Explaining letcc in JAM code
In our direct interpreters, the only way we could define
letcc was to use the letcc construct in Scheme, which
explains nothing. The relevant clause in Eval would be
 ((letcc? M)
 (letcc k (Eval (body-of M)
 (extend env (var-of M) k))))
given the expression syntax
(define-struct letcc (var body)).
In our CPSed interpreter, we can define letcc without any
special support from the metalanguage:
 ((letcc? M) (Eval/k (body-of M)
 (extend env (var-of M) k)

 k))
Note that we can now easily implement letcc in interpreters
written in languages (like Java) without continuations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

