
Comp 411
Principles of Programming Languages

Lecture 28
Storage Managment

Corky Cartwright
April 7, 2014

Heap Management
In all of our interpreter designs (including those written in
machine code or C), we have presumed the existence of a
heap supporting dynamic allocation (new operations in C++
or Java).
For efficient space utilization, the heap must reclaim
storage that is no longer in use by the program. In C and
C++, the programmer is responsible for explicitly
reclaiming storage (the free and delete operations in C
and C++). In a well-written C/C++ program all
dynamically allocated storage is freed just before it
becomes inaccessible (no object becomes inaccessible prior
to being freed; once freed, an object is never referenced
again).
In practice, manual storage management is clumsy
(interfaces become much more complex) and error-prone.

Manual Heap Management
• This subject may be boring but it is non-trivial.
• Crux of the problem: what happens when the original sequential block of

available storage is exhausted? The heap allocator must reallocate freed
storage. But this task is much harder than allocating from the original
sequential block. How are freed blocks managed? As a doubly linked
list? Are adjacent blocks coalesced? How do you test for adjacent
blocks? Ultimately allocating reused storage involves search. It is not a
constant time operation. What is the best policy? First-fit? Best-fit?
Should the pointer for the next search be the resumption value for the last
search or start at the beginning?

• Only tractable approach to manual storage management: arenas [regions].
C libraries that support arenas are widely available. Unfortunately, arenas
only work for some patterns of allocation/deallocation.
An arena is a sequential block of storage that is freed as a unit. All of the
objects allocated in an arena must have a common deallocation (death)
time. The arena is gradually filled by allocation operations (directed to
that arena), but nothing is freed until the arena is no longer relevant to the
computation (e.g. a compiler begins a new phase, so data structures
associated only with the previous phase can be deallocated).

T

Manual Heap Libraries
• A well-written heap library generally out-performs

customized heap managers written by programmers (e.g.
overriding new and delete in C++. Exception: well-
chosen arena applications.

• If allocation and deallocation do not follow a simple
discipline/pattern that is exploited by the manual heap
manager, garbage collection generally wins.

• Typical penalty created by use of automatic storage
management: a space penalty to hold a larger heap.

Ta

Manual Heap Libraries
• A well-written heap library generally out-performs

customized heap managers written by programmers (e.g.
overriding new and delete in C++). Exception: well-
chosen arena applications.

• If allocation and deallocation do not follow a simple
discipline/pattern that is exploited by the manual heap
management, garbage collection generally wins.

• Typical penalty created by use of automatic storage
management: a space penalty to hold a larger heap.

Ta

Automatic Heap Management
• Two fundamental approaches to automatic heap

management:
• Reference counting: every object includes a field that

counts the number of objects (every data structure
containing a heap pointer including an ordinary variable is
called an object) pointing to it. Some schemes defer
updating reference counts, but an object with a deferred
count cannot be freed.

• Garbage collection: periodically (usually when no free
space is left) the heap management system determines
which objects in the heap have become inaccessible.

 The term garbage collection is not used consistently in
the literature. In some cases, it means any approach to
automatic heap management. In others it refers to
schemes that do not rely on reference counting. I will use
the latter convention.

.

Reference Counting
• Every object includes an additional field that counts the

number of objects pointing to it; this field must be large
enough so that it cannot overflow (e.g., machine word
[address] size).

• When an object is created, its reference count is set to 1
(and a pointer to it must be created within some other
object, perhaps a variable).

• When a pointer field in an object is mutated, the reference
count for the old object is decremented and the reference
count for the new object is incremented. This combined
operation must be atomic with respect to the checking for 0
reference counts.

• When a reference count for an object becomes 0, the object
is freed (returned to free storage).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

