
Comp 411
Principles of Programming Languages

Lecture 29
Garbage Collection I

Corky Cartwright
April 9, 2014



Storage Retention Based on Tracing
True garbage collection relies on tracing all objects that are accessible from 
a set of designated “root” pointers.  The roots are typically all pointers in 
the stack and static data area.  In addition, when pointers are stored in 
registers, register pointers must be included in the root set.
Garbage collection is conservative; it must assume – in the absence of some 
form of proof – that every object accessible via a chain of references from 
the root set is still alive and must be retained after collection.  In principle, 
compilers can perform static analysis (like type inference) to determine 
when some reachable objects (e.g. local variables) are never subsequently 
accessed.  This information can be embedded in the object code and 
exploited by the garbage collector.  To my knowledge, this technique has 
not yet been used in a production language platform.
Despite the fact that all garbage collection is conservative, the term 
conservative garbage collection is used for a special form of garbage 
collection where little if anything is known about which words in the stack 
are pointers.  (Nearly all processors assume that addresses are aligned on 
the appropriate byte boundary.  Our subsequence discussion relies on this 
assumption.)
Taming manual storage management.  Only simple, efficient approach is to 
use arenas (also called regions), but this approach only works for some 
applications.  An arena is a block of storage that is allocated and 
deallocated as a unit.  All of the objects in an arena need to have a common 
deallocation (death) time.  The entire arena is freed when this common time 
occurs.  Nothing in the arena is freed prior to this time.  Arenas work well 
for storage pools that allocated gradually over time and all become obsolete 
at some future point in time (e.g., when a compiler begins a new phase.)
For efficient space utilization, the heap must reclaim 
storage that is no longer in use.  In C and C++, the 
programmer is responsible for explicitly reclaiming storage 
(the new and delete operations in C and C++). In a well-
written C/C++ program all dynamically allocated storage is 
freed just before it becomes inaccessible (no object 
becomes inaccessible prior to being freed; once freed, an 
object is never referenced again).
In practice, manual storage management is clumsy 
(interfaces become much more complex) and error-prone.



Conservative Garbage Collection
A better name for this form of storage recovery might be garbage collection 
in a hostile environment.  The canonical example of such storage recovery is 
revising the C/C++ malloc library to perform garbage collection.  The free 
(delete in C++) procedure in such a library is a no-op (does nothing).
How does conservative garbage collection work?  Brute force garbage 
collectors use a two stage process called mark-and-sweep.  During the mark 
phase, the collector marks every reachable object by setting a designated bit 
in the header (which is reserved for this purpose during collection and is 
typically maintained in a “clear”state).   After all reachable storage has been 
marked, the collector sweeps the entire heap (a contiguous area of memory) 
examining every object and linking unreachable objects into a free storage list 
(or other form of data structure recording freed storage blocks).  Exact (non-
conservative) collectors may also move objects to compact the footprint of 
live storage, but no object can be moved unless all pointers to that object can 
be identified and updated.   Conservative garbage collectors cannot move 
objects in the absence of special constraints on what can point to the object to 
be moved.  Conservative garbage collectors don't generally know whether an 
address aligned field in a heap object or stack frame is a pointer or not.  So 
they assume that every such field is a pointer (to any live object) unless they 
can prove otherwise.



Reducing False Positives
The key to effective conservative garbage collection is minimizing the set of false 
positives, the assumption that a field is a pointer when it is not.  
How can a conservative collector prove that a putative pointer is not in fact a 
pointer?  By allocating data according to the following pattern: subdivide the heap 
into blocks containing objects of the same size.  (Very large objects must be treated 
separately.)   Given a putative pointer, the collector checks to see if it is aligned 
properly for the block that it points to.  If objects are reasonably large on average, 
this technique is quite effective.   Note that even when objects are not grouped by 
size but are address aligned, the collector can disqualify 75% (87.5% on a 64 bit 
machine) of non-pointers (on average) because they are misaligned (assuming a 
uniform distribution on non-pointer values in the heap).
In practice, conservative garbage collection has two serious performance 
disadvantages.  First, it cannot compact the footprint of live memory because it 
cannot move objects.  Second, if an application includes large circularly linked 
structures or arrays (assuming pointers can refer to elements), the chances of false 
retention of such objects after they are unreachable is high because a false pointer 
(e.g. an integer) pointing to any node of the structure forces its retention.
In addition, conservative GC requires that compilers not perform any optimizations 
that eliminate pointers to the bases of objects.  C/C++ compilers generally comply 
with this restriction but it is not universally followed. time occurs.  



Conservative GC in Practice
Conservative GC is important technology.  Xerox PARC ported their D-
machine code bases (Dolphin, Dandelion, Dorado) to the Sun SPARC 
architecture in the late 80's using this technology.  Many C/C++ applications 
like early editions of DrScheme rely on this technology. 
An instructive variation on conservative GC is the design of early Sun 
JVMs. Since local variables in a Java stack frame do not have fixed types (a 
huge design error IMO), exact GC in Java is unnecessarily complex.  The 
compiler or class loader must build “stack maps” for a sufficient set of “safe 
points” within the code for every method!  (A safe point is designated point 
in the program where stack frame usage is known.  Every point in the 
program is required to be a bounded distance – counting instructions in the 
execution stream – from a safe point.)  As a result, early JVMs did not 
perform exact collection.  They relied on the following trick: every object is 
accessed through a handle (a level of indirection) stored in a hash table 
exclusively under the control of the JVM.  This level of indirection enables 
a conservative collector to safely move objects because all heap pointers are 
located in the hash table of handles.  But the cost is enormous.  The use of 
handles can slow the execution of compiled code by far more than a factor 
of two.  Why? Accessing an object takes two memory references rather than 
one but the extra reference can cost far more than a single reference because 
of memory caching and pipelining.  This design was a “quick and dirty” 
implementation hack.



Mark and Sweep Collectors I
The first production quality collectors (I am ignoring collectors for specialty 
languages like SNOBOL and APL that were generally interpreted) appeared 
in Lisp systems.
GC in Lisp systems was a much simpler problem that GC in Java, C#, or 
modern Lisp dialects like Scheme and Common Lisp.  Why?  The only 
dynamically allocated objects were cons cells (other than strings, symbols, 
arrays, and dynamically loaded machine code which were all treated specially 
and not stored in the main heap).  In most machines, every cons cell occupied 
the smallest addressable unit containing two addresses.  (In some old machine 
designs with 36-bit words and addresses no larger than 18 bits, a cons cell fit 
in a single word.)  The key issue is that the heap was formatted simply as an 
array of cons cells.  
Every cons cell included a designated bit (often the low-order bit of one of 
the word-aligned addresses in the cell) used for marking accessible cells.  
This “mark bit” was left clear (0) except during garbage collection.  The 
“mark” phase of mark-sweep collection simply performs depth-first search to 
mark all cons cells accessible from the roots.  The “sweep” phase simply 
scans the entire heap (an array of cons cells) linking together unmarked cells 
in a free-list and clearing all mark bits.



Mark and Sweep Collectors II
In modern languages, mark and sweep collection is similar but more complex 
where heap objects vary in size.  The “mark” phase is essentially unchanged 
(except that the traversal of an object's embedded pointers depends on the 
type of the object).  But the “sweep” phase is more complex, because such 
collectors coalesce adjacent free objects.  In addition, there can be holes 
(small unallocated fragments) in the heap, which can be detected by zeroing 
all unallocated memory and ensuring that the header word of an allocated 
object cannot be zero.
In practice, vanilla mark-and-sweep is not an effective approach to separating 
live data from garbage in modern languages because it is important to 
compact the live objects into a contiguous area of memory (for dramatically 
better cache behavior and simplified dynamic allocation).  Hence, mark-and-
sweep collection has been superseded by complex “mark-and-compact” 
schemes that compact the live objects while scanning.  See Paul Wilson's 
monograph for the ugly details.
All mark-and-sweep collectors (including “mark-and-compact”) have a 
serious flaw that prevents them from being a good comprehensive solution to 
storage management in modern languages: they run in time proportional to 
the size of the collected heap – regardless of how few objects survive the 
collection.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

