

Comp 411
Principles of Programming Languages

Lecture 3

Parsing

Corky Cartwright

January 17, 2014

Top Down Parsing cont.

• We restrict our attention to LL(k) grammars because they can be parsed
deterministically using a top-down approach. Every LL(k) grammer is LR(1). LR(k)
grammars are those that can be parsed deterministically bottom-up using k-symbol
lookahead.

• Data definition corresponding to preceding sample grammar:

Expr = Expr + Expr | Number | Variable

Note that the preceding defines a set of trees not strings.

• Why is the data definition simpler? (Why did we introduce the syntactic category
<term> in the CFG but not in the data definition?)

• Consider the following example:

5+10+7

• Are strings a good data representation for programs?

• Why do we use external string representations for programs (in source program files)?

Parsing algorithms
• Top-down (predictive) parsing: use k token look-ahead to

determine next syntactic category.
• Simplest description uses syntax diagrams

expr:

term:

+ expr

number

variable

(expr)

term

Key Idea in Top Down Parsing
• Use k token look-ahead to determine which direction to go

at a branch point in the current syntax diagram.
• Example: parsing 5+10 as an expr

– Start parsing by reading first token 5 and matching the syntax
diagram for expr

– Must recognize a term; invoke rule (diagram) for term
– Select the number branch (path) based on current token 5
– Digest the current token to match number and read next token +;

return from term back to expr
– Select the + branch in expr diagram based on current token
– Digest the current token to match + and read the next token 10
– Must recognize an expr; invoke rule (diagram) for expr
– Must recognize a term; invoke rule (diagram) for term
– Select the number branch based on current token 10
– Digest the current token to match number and read next token

EOF
– Return from term; return from expr

Designing Grammars for Top-Down Parsing

• Many different grammars generate the same language (set of strings):
• Requirement for any efficient parsing technique: determinism of

(non-ambiguity) of the grammar defining the language.
• For deterministic top-down parsing, we must design the grammar so that

we can always tell what rule to use next starting from the bottom
(leaves) of the parse tree by looking ahead some small number (k) of
tokens (formalized as LL(k) parsing).

• For top down parsing:
– Eliminate left recursion; use right recursion instead
– Factor out common prefixes (as in syntax diagrams)
– Use iteration in syntax diagrams instead of right recursion where necessary
– In extreme cases, hack the lexer to split token categories based on local context

Other Parsing Methods
● When we parse a sentence using a CFG, we effectively build a (parse) tree showing how to

construct the sentence using the grammar. The root (start) symbol is the root of the tree and
the tokens in the input stream are the leaves.

● Top-down (predictive) parsing is simple and intuitive, but is is not as powerful a
deterministic parsing strategy as bottom-up parsing which is much more tedious. Bottom
up deterministic parsing is formalized as LR(k) parsing.
Every LL(k) grammar is also LR(1) but many LR(1) grammars are not LL(k) for any k.

● No sane person manually writes a bottom-up parser. In other words, there is no credible
bottom-up alternative to recursive descent parsing. Bottom-up parsers are generated using
parser-generator tools which until recently were almost universally based on LR(k) parsing
(or some bottom-up restriction of LR(k) such as SLR(k) or LALR(k)). But some newer
parser generators like javacc are based on LL(k) parsing. In DrJava, we have several
different parsers including both recursive descent parsers and automatically generated
parsers produced by javacc.

● Why is top-down parsing making inroads among parser generators? Top-down parsing is
much easier to understand and more amenable to generating intelligible syntax diagnostics.
Why is recursive descent still used in production compilers? Because it is straightforward
(if tedious) to code, supports sensible error diagnostics, and accommodates ad hoc hacks
(e.g., use of state).to get around the LL(k) restriction.

● If you want to learn about the mechanics of bottom-up parsing, take Comp 412.

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

