
Comp 411
Principles of Programming Languages

Lecture 6
Implementing Syntactic Interpreters

Corky Cartwright

 January 29, 2014

A Syntactic Evaluator
Can we translate our syntactic reduction rules into a program?

;; R → R ; an illegal program can return an AST (type R)

(define eval

(lambda (M)

(cond

((var? M) M) ; M is a free var (stuck!)

((or (const? M) (proc? M)) M) ; M is a value

((add? M) ; M has form (+ l r)

(add (eval (add-left M)) (eval (add-right M))))

(else ; M has form (N1 N2)

(apply (eval (app-rator M)) (eval (app-rand M)))))))
;; Proc V → R

(define apply
(lambda (a-proc a-value)
 (cond

((not (proc? A-proc))
; ill-formed app

(make-app a-proc a-value)) ; return stuck state

(else (eval (subst a-value
; return substituted body

(proc-param a-proc)
(proc-body a-proc)))))))

Coding Substitution
;; V Sym R → R Substitutes v for x in M
(define subst
 (lambda (v x M)
 (cond

[(var? M) (cond [(equal? (var-name M) x) v] [else M])]
[(const? M) M]
[(proc? M))
(cond [(equal? x (proc-param M)) M]
 [else (make-proc (proc-param M)
 (subst v x (proc-body M)))])]

[(add? M) (make-add (subst v x (add-left M))
 (subst v x (add-right M)))]
[else
 ;; M is (N1 N2)

(make-app (subst v x (app-rator M))
 (subst v x (app-rand M)))])))

Is subst safe? No! It is oblivious to free variables in M .

Exercise: Revise subst so that it is safe. Note that blind substitution works as long
as our top-level M is well-formed and contains no free variables. Why?

Comments on Syntactic Interpreter
Still need to define add. What does add do on non-const values?
The key property of this evaluator is that it only manipulates
(abstract) syntax. It specifies the meaning of LC by mechanically
transforming the syntactic representation of a program. This
approach only assigns a satisfactory meaning to complete LC
programs, not to subtrees of complete programs. Counterexample:

((lambda (x) (+ x y)) 7)

If add mirrors syntactic evaluation, then it will return (+ 7 y).
Otherwise, it will generate a run-time error because y is not a value. In a
context where y is bound to 5 , it returns 12; not (+ 7 y) or a
run-time error. Meaning of sub-expressions should be defined so that
meaning ⟦•⟧ is compositional, i.e. ,

⟦ (c M
1
 … M

k
)⟧ = ⟦ c ⟧ (⟦ M

1
⟧, … , ⟦ M

k
⟧)

Syntactic interpretation utterly fails in this regard.

Toward Semantic Interpretation
From a software engineering perspective, what is wrong with our syntactic interpreter?
How fast is subst? How can we do better?

Avoid unnecessary substitutions by keeping a table of bindings.

;; Binding = (make-Binding Sym V)
 ; Note: Sym not Var
;; Env = (listOf Binding)
;; R Env → V
(define eval
 (lambda (M env)
 (cond

((var? M) (lookup (var-name M) env))
((or (const? M) (proc? M)) M)

((add? M) ; M has form (+ l r)

(add (eval (add-left M) env) (eval (add-right M) env)))

(else ; M has form (N1 N2)

(apply (eval (app-rator M) env) (eval (app-rand M) env) env)))))

;; Proc V Env → V
(define apply

(lambda (a-proc a-value env)
(eval (proc-body a-proc) (cons ((proc-param a-proc) a-value) env)))

More Readable Notation for Lambda Expressions
● In essentially all functional languages for software

development, there is alternate notation for
 ((lambda (x) M) N)
namely
 (let [(x N)] M) Scheme
or
 let x := N; in M Jam

● This alternate notation is literally an abbreviation for the
explicit lambda form

● In this alternate notation, the beta-reduction rule has the
form
(let [(x V)] M) ⇒ M[x := V] Call-by-value
(let [(x N)] M) ⇒ M[x := N] Call-by-value

Gotcha's in Semantic Interpretation
● What if a-proc contains free variables? Do we always get the

right answer (as defined by syntactic interpretation)?
Illustration:

(let [(a 5)]
(let [(app-to-a (lambda (f) (f a))]
 (let [(a 10)]

(+ a (app-to-a (lambda (x) x))))))

• What goes wrong ?

• Think about how you might fix the problem. Hint: what information
 is missing in env when a-proc is evaluated? Remember, you want
 the same result as if you were performing syntactic interpretation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

