

Comp 411
Principles of Programming Languages

Lecture 7
Meta-interpreters

Corky Cartwright

January 31, 2014

Denotational Semantics
• The primary alternative to syntactic semantics is

denotational semantics. A denotational semantics maps
abstract syntax trees to a set of denotations (mathematical
values like numbers, lists, and functions).

• Simple denotations like numbers and lists are essentially the
same mathematical objects as syntactic values: they have
simple inductive definitions with exactly the same structure
as the corresponding abstract syntax trees.

• But denotations can also be complex mathematical objects
like functions or sets. For example, the denotation for a
lambda-expression in “pure” (functional) Scheme is a
function mapping denotations to denotations--not some
syntax tree as in a syntactic semantics.

Meta-interpreters
• Denotational semantics is rooted in mathematical logic: the semantics of terms

(expressions) in the predicate calculus is defined denotationally by recursion
on the syntactic structure of terms. The meaning of each term is a value in an
mathematical structure (as used in first-order logic).

• In the realm of programming languages, purely functional interpreters (defined
by pure recursion on the structure of ASTs) constitute a restricted form of
denotational definition.
– The defect is that the output of an actual interpreter is restricted to values that can be

characterized syntactically. (How do you output a function?)

– On the other hand, interpreters naturally introduce a simple form of functional
abstraction. A recursive interpreter accepts an extra input, an environment mapping free
variables to values, thus defining the meaning of a program expression as a function from
environments to values.

– Syntactic interpreters are not denotational because they transform ASTs. A denotational
interpreter uses pure structural recursion. To handle the bindings to variables, it cannot
perform substitutions; it must maintain an environment of bindings instead.

Meta-interpreters cont.
• Interpreters written in a denotational style are often called meta-interpreters

because they are defined in a meta-mathematical framework where
programming language expressions and denotations are objects in the
framework. The definition of the interpreter is a level above definitions of
functions in the language being defined.

• In mathematical logic, meta-level definitions are expressed informally as
definitions of mathematical functions.

• In program semantics, meta-level definitions are expressed in a convenient
functional framework with a semantics that is easily defined and understood
using informal mathematics. Formal denotational definitions are written in a
mathematical meta-language corresponding to some formulation of a
Universal Domain (a mathematical domain in which all relevant programming
language domains can be simply embedded, usually as projections). This
material is subject of a graduate level course on domain theory.

• A functional interpreter for language L written in a functional subset of L is
called a meta-circular interpreter. It really isn't circular because it reduces the
meaning of all programs to a single purely functional program which can be
understood independently using simple mathematical machinery (inductive
definitions over familiar mathematical domains).

Denotational Building Blocks
• Inductively defined ASTs for program syntax. We have

thoroughly discussed this topic.
• What about denotations? For now, we will only use simple

inductively defined values (without functional abstraction)
like numbers, lists, tuples, etc.

• What about environments? Mathematicians like to use
functions. An environment is a function from variables to
denotations. But environment functions are special because
they are finite. Software engineers prefer to represent them
as lists of pairs binding variables to denotations.

• In “higher-order” languages, functions are data objects.
How do we represent them? For now we will use ASTs
possibly supplemented by simple denotations (as described
above).

Critique of Deferred Substitution
Interpreter from Lecture 6

• How did we represent the denotations of lambda-
expressions (functions) in environments? By
their ASTs. Is this implementation correct? No!

• Counterexample:
(let ([twice (lambda (f) (lambda (x) (f (f x))))])
 (let ([x 5])
 ((twice (lambda (y) (+ x y))) 0)))

Evaluate (syntactically)
 (let [(twice (lambda (f) (lambda (x) (f (f x)))))]

 (let [(x 5)]
 (twice (lambda (y) (+ x y))) 0))

 ⇒

 ((lambda (f) (lambda (x) (f (f x))))
 (lambda (y) (+ x y)))
 0))

 ⇒
 ((lambda (f) (lambda (x) (f (f x))))
 (lambda (y) (+ 5 y)))
 0)

 ⇒
 ((lambda (x) ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) x))))
 0) ⇒
 ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) 0)) ⇒
 ((lambda (y) (+ 5 y)) (+ 5 0)) ⇒
 ((lambda (y) (+ 5 y)) 5) ⇒ (+ 5 5) ⇒ 10

 (let [(x 5)]

Evaluate (using our interpreter)
(let [(twice (lambda (f) (lambda (x) (f (f x)))))]

 (twice (lambda (y) (+ x y))) 0)) ⇒

 (let [(x 5)] ((twice (lambda (y) (+ x y))) 0)) ⇒

 { x = 5, twice = (lambda (f) (lambda (x) (f (f x)))) }
 ((twice (lambda (y) (+ x y))) 0) ⇒
 { x = 5, ... }
 (((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ x y))) 0) ⇒
 { f = (lambda (y) (+ x y)), x = 5, ... } ((lambda (x) (f (f x))) 0) ⇒
 { x = 0, f = (lambda (y) (+ x y)), ... } (f (f x)) ⇒
 { x = 0, f = (lambda (y) (+ x y)), ... } ((lambda (y) (+ x y)) (f x)) ⇒
 { x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) x)) ⇒
 { x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) 0)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ x y)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 y)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 0)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) 0) ⇒
 { y = 0, y = 0, x = 0, ... } (+ x y) ⇒ { y = 0, ... } (+ 0 y) ⇒
 { ... } (+ 0 0) ⇒ 0

 { twice = (lambda (f) (lambda (x) (f (f x)))) }

 (let (x 5)]

Closures Are Essential
• Exercise: evaluate the same expression using our broken interpreter.

• The computed “answer” is 0!

• The interpreter uses the wrong binding for the free variable x in
(lambda (y) (+ x y)) .

• The environment records deferred substitutions. When we pass a function
as an argument, we need to pass a “package” including the deferred
substitutions. Why? The function will be applied in a different
environment which may associate the wrong bindings it free variables.
In the PL (programming languages) literature, these packages (code
representation, environment) are called closures.

• Note the similarity between this mistake and the “capture of bound
variables”.

• Unfortunately, this mistake has been labeled as a feature rather than a bug
in much of the PL literature. It is called “dynamic scoping” rather than
a horrendous mistake. Watch out whenever you must program in a language
with “dynamic scoping”.

Correct Semantic Interpretation
(define-struct (closure proc env))
;; V = Const | Closure ; revises our former definition of V
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = (listOf Binding)
;; Closure = (make-closure Proc Env)
;; R Env V→
(define eval
 (lambda (M env)
 (cond
 ((var? M) (lookup (var-name M) env))
 ((const? M) M)
 ((proc? M)) (make-closure M env))
 ((add? M) ; M has form (+ l r)
 (add (eval (add-left M) env) (eval (add-right M) env)))
 (else ; M has form (N1 N2)
 (apply (eval (app-rator M) env) (eval (app-rand M) env))))))
;; Closure V V→
(define apply
 (lambda (cl v) ; assume cl is a closure
 (eval (proc-body (closure-proc cl))
 (cons (make-binding (proc-param (closure-proc cl)) v)

 (closure-env cl)))

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

