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Denotational Semantics
• The primary alternative to syntactic semantics is 

denotational semantics.  A denotational semantics maps 
abstract syntax trees to a set of denotations (mathematical 
values like numbers, lists, and functions).  

• Simple denotations like numbers and lists are essentially the 
same mathematical objects as syntactic values: they have 
simple inductive definitions with exactly the same structure 
as the corresponding abstract syntax trees.

• But denotations can also be complex mathematical objects 
like functions or sets.  For example, the denotation for a 
lambda-expression in “pure” (functional) Scheme  is a 
function mapping denotations to denotations--not some 
syntax tree as in a syntactic semantics.



  

Meta-interpreters
• Denotational semantics is rooted in mathematical logic: the semantics of terms 

(expressions) in the predicate calculus is defined denotationally by recursion 
on the syntactic structure of terms.  The meaning of each term is a value in an 
mathematical structure (as used in first-order logic).

• In the realm of programming languages, purely functional interpreters (defined 
by pure recursion on the structure of ASTs) constitute a restricted form of 
denotational definition. 
– The defect is that the output of an actual interpreter is restricted to values that can be 

characterized syntactically.  (How do you output a function?)

–  On the other hand, interpreters naturally introduce a simple form of  functional 
abstraction.  A recursive interpreter accepts an extra input, an environment mapping free 
variables to values, thus defining the meaning of a program expression as a function from 
environments to values.

– Syntactic interpreters are not denotational because they transform ASTs.  A denotational 
interpreter uses pure structural recursion.  To handle the bindings to variables, it cannot 
perform substitutions; it must maintain an environment of bindings instead.



  

Meta-interpreters cont.
• Interpreters written in a denotational style are often called meta-interpreters 

because they are defined in a meta-mathematical framework where 
programming language expressions and denotations are objects in the 
framework.  The definition of the interpreter is a level above definitions of 
functions in the language being defined.

• In mathematical logic, meta-level definitions are expressed informally as 
definitions of mathematical functions.

• In program semantics, meta-level definitions are expressed in a convenient 
functional framework with a semantics that is easily defined and understood 
using informal mathematics.  Formal denotational definitions are written in a 
mathematical meta-language corresponding to some formulation of a 
Universal Domain (a mathematical domain in which all relevant programming 
language domains can be simply embedded, usually as projections).  This 
material is subject of a graduate level course on domain theory.

• A functional interpreter for language L written in a functional subset of L is 
called a meta-circular interpreter.  It really isn't circular because it reduces the 
meaning of all programs to a single purely functional program which can be 
understood independently using simple mathematical machinery (inductive 
definitions over familiar mathematical domains).



  

Denotational Building Blocks
• Inductively defined ASTs for program syntax.  We have 

thoroughly discussed this topic.
• What about denotations?  For now, we will only use simple 

inductively defined values (without functional abstraction) 
like numbers, lists, tuples, etc.

• What about environments?  Mathematicians like to use 
functions.  An environment is a function from variables to 
denotations.  But environment functions are special because 
they are finite.  Software engineers prefer to represent them 
as lists of pairs binding variables to denotations.

• In “higher-order” languages, functions are data objects.  
How do we represent them?  For now we will use ASTs 
possibly supplemented by simple denotations (as described 
above).



  

Critique of Deferred Substitution 
Interpreter from Lecture 6

• How did we represent the denotations of lambda-
expressions (functions) in environments?  By 
their ASTs.  Is this implementation correct?  No!

• Counterexample: 
(let ([twice (lambda (f) (lambda (x) (f (f x))))])
  (let ([x 5])
     ((twice (lambda (y) (+ x y))) 0)))



  

Evaluate (syntactically)
   (let     [(twice (lambda (f) (lambda (x) (f (f x)))))]

   (let [(x 5)]
    (twice (lambda (y) (+ x y))) 0))  

   ⇒

   ((lambda (f) (lambda (x) (f (f x))))
     (lambda (y) (+ x y))) 
   0))  

   ⇒
 ((lambda (f) (lambda (x) (f (f x)))) 
   (lambda (y) (+ 5 y)))
   0)  

   ⇒
  ((lambda (x) ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) x))))
   0) ⇒
 ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) 0)) ⇒
 ((lambda (y) (+ 5 y)) (+ 5 0)) ⇒
 ((lambda (y) (+ 5 y)) 5) ⇒ (+ 5 5) ⇒ 10

  (let [(x 5)]



  

Evaluate (using our interpreter)
(let [(twice (lambda (f) (lambda (x) (f (f x)))))]

     (twice (lambda (y) (+ x y))) 0))  ⇒

    (let [(x 5)] ((twice (lambda (y) (+ x y))) 0))  ⇒

 { x = 5, twice = (lambda (f) (lambda (x) (f (f x)))) }
   ((twice (lambda (y) (+ x y))) 0)  ⇒
 { x = 5, ... }
   (((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ x y))) 0) ⇒
 { f = (lambda (y) (+ x y)),  x = 5, ... } ((lambda (x) (f (f x))) 0) ⇒
 { x = 0, f = (lambda (y) (+ x y)), ... } (f (f x)) ⇒
 { x = 0, f = (lambda (y) (+ x y)), ... } ((lambda (y) (+ x y)) (f x)) ⇒
 { x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) x)) ⇒
 { x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) 0)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ x y)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 y)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 0)) ⇒
 { y = 0, x = 0, ... } ((lambda (y) (+ x y)) 0) ⇒
 { y = 0, y = 0, x = 0, ... } (+ x y) ⇒ { y = 0, ... } (+ 0 y) ⇒
 { ... } (+ 0 0) ⇒ 0

  { twice = (lambda (f) (lambda (x) (f (f x)))) }

 (let (x 5)]



  

Closures Are Essential
• Exercise: evaluate the same expression using our broken interpreter.

• The computed “answer” is 0!

• The interpreter uses the wrong binding for the free variable x  in 
(lambda (y) (+ x y)) .

• The environment records deferred substitutions.  When we pass a function 
as an argument, we need to pass a “package” including the deferred 
substitutions.  Why?  The function will be applied in a different 
environment which may associate the wrong bindings it free variables.   
In the PL (programming languages) literature, these packages (code 
representation, environment) are called closures.

• Note the similarity between this mistake and the “capture of bound 
variables”.

• Unfortunately, this mistake has been labeled as a feature rather than a bug 
in much of the PL literature.  It is called “dynamic scoping” rather than 
a horrendous mistake.  Watch out whenever you must program in a language
with “dynamic scoping”. 



  

Correct Semantic Interpretation
(define-struct (closure proc env))
;; V = Const | Closure  ; revises our former definition of V
;; Binding = (make-Binding Sym V)      ; Note: Sym not Var
;; Env = (listOf Binding)
;; Closure = (make-closure Proc Env)
;; R Env  V→
(define eval
  (lambda (M env)
    (cond
      ((var? M) (lookup (var-name M) env))
      ((const? M) M)
      ((proc? M)) (make-closure M env))
      ((add? M)                        ; M has form (+ l r)  
       (add (eval (add-left M) env) (eval (add-right M) env)))
      (else                            ; M has form (N1 N2) 
       (apply (eval (app-rator M) env) (eval (app-rand M) env))))))
;; Closure V  V→
(define apply
  (lambda (cl v)                       ; assume cl is a closure
    (eval (proc-body (closure-proc cl)) 
        (cons (make-binding (proc-param (closure-proc cl)) v) 

                (closure-env cl)))
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