
  

Comp 411
Principles of Programming Languages

Lecture 9
Meta-interpreters III 

Corky Cartwright

February 3, 2014



  

Major Challenge
LC does not include a recursive binding operation 
(like Scheme letrec or local).  How would we 
define eval for such a construct?

• Key problem: the closure structure for a 
recursive lambda must include an environment 
that refers to itself!

• In imperative Java, how would we construct 
such an environment.  Hint: how do we build 
“circular” data structures in general in Java?  
Imperativity is brute force.  But it works.  We 
will use it in Project 3 and thereafter.



  

Minor Challenge

How could we define an environment that refers to 
itself in functional Scheme (or Ocaml)?
● Key problem: observe that in let and lambda the 

expression defining the value of a variable cannot 
refer to itself.

● Solution: does functional Scheme (or Ocaml) contain a
recursive binding construct?

● How can we use this construct to define a recursive 
environment? 

● What environment representation must we use?



  

Advantage of Representing
Environments as Functions

Languages that support functions as values (or an OO equivalent 
like anonymous inner classes [Java] or anonymous delegates [C#]) 
support the dynamic definition of recursive functions.   So we can 
write a purely functional interpreter that handles recursive binding by 
constructing a new environment (a function) that recurs on itself 
(refers to itself).  In Scheme, given a function e that represents the
current environment, we can extend e with a new binding
of symbol 'f' to an AST rhs (right-hand-side) that is 
evaluated in the extended environment by constructing
the environment
 (define new-e 
    (lambda (sym) (cons (cons sym (eval rhs new-e)) e)))

where eval is the meta-interpreter. 
           



  

A Bigger Challenge

Assume that we want to write LC in a purely 
functional language without a recursive binding 
construct (say functional Scheme without define 
and letrec)? 

• Key problem: must expand letrec into lambda 

• No simple solution to this problem.   We need to 
invoke syntactic magic or (equivalently) develop 
some sophisticated mathematical machinery.



  

Key Intuitions

• Computation is incremental━not monolithic.
• Slogan: general computation is successive 

approximation (typically in response to 
successive demands for more information).

• Familiar example: a program mapping a 
potentially infinite input stream of characters to 
a potentially infinite output stream of characters. 
Generalization: infinite trees mapped to infinite 
trees.



  

Mathematical Foundations
Domains of computations (like streams, trees, partial functions as graphs):

• partially ordered set (po)

• finitary basis (set of finite approximations)

– countable

– closed under LUBs on finite bounded subsets

• chain

• chain-complete

• complete partial order (cpo)

• “home-plate” cpo (not domain; finite elements not a finitary basis)

• bottom (⊥)

• flat domain (monolithic set of values formulated as domain)

– integers, booleans, strings, conventional finite lists, ASTs



  

Key Mathematical Concepts

Computable functions:

• monotonic (universal)

• continuous (universal)

• strict (typical)



  

Examples

Domains

• flat domains

• strict function spaces on flat domains

• lazy trees of boolean (of D where D is flat)

•    factorial functional

See “Domain Theory: An Introduction” in 
References for Lectures 10-12


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

