

Comp 411
Principles of Programming Languages

Lecture 15
Church and State: Supporting Assignment

Corky Cartwright

February 19, 2014

What Is Assignment?
• Assignment is rebinding (changing the value of) a variable in the

current environment. This process is also called mutation since
the environment is destructively changed.

• Nearly all practical programming languages include operations for
mutating the values of program variables and data structures.
Only plausible exception is Haskell, but is it really practical?

• To model this feature in LC, we will add an assignment operation
to the language with syntax
 (set! x M)
and the abstract representation
 (define-struct (setter lhs rhs))
where x is any lambda-bound identifier.

• Assignment set! enables us to model changing events in the real
world.

How Do We Define the Semantics of
Assignment Using a Meta-Interpreter?

Two common approaches:

• Use mutation in the meta-language.

• Add a parameter to the eval function representing a store which
maps locations to values. The environment maps assignable
(mutable) variables to locations. What is a location? An element
of a specified denumerable set, typically the natural numbers (akin
to machine addresses).

Implications:
● Trade-offs: the second approach is pure but ugly. It makes

interpreters look like compilers. Yuck!
● Implication: assignment is inherently ugly from a semantic

perspective.

Using Mutation to Define Mutation

Key intuition: implementation is easy provided environment
sharing-relationships are modeled correctly. A nested environment
shares its parent environment!

Observation: there is no straightforward way to support assignment
if environments are represented as functions. Why? Assignment
must update shared bindings but functions do not support any
sharing relationships. Linked lists (and other concrete data
structures) do!

To change the value associated with a variable x, we must bind a
different value to the variable x. We can accomplish this by
including a clause in MEval case-split of the form:

 ((setter? M) <change the environment>)

But how do we do this?

Using Mutation to Define Mutation cont.

● To make variables assignable, we need to change the values they stand for.

● Variables cannot be directly associated with values; rather, they must be
associated with an object which can be modified to hold a different value.

● What kind of object can we use?
● In Scheme, a particularly apt choice is to use a box to hold the value of

each variable. Then we can use mutation on Scheme boxes to change the
value of the second field.

● In Java, the value field in a Binding object simply has to be mutable.

● Moral: variables must stand for boxes (mutable cells).
● Comment: assignment languages like Java implicitly use boxes almost

everywhere, but these boxes are not objects. They cannot be passed as
values.

Revising Our Meta-Interpreter
We must revise the clause that binds new variables (which in LC are
only introduced in λ-expressions):
 ((app? M)
 (Mapply

 (MEval (app-fp M) env)

 (box (MEval (app-ap M) env)))) ;; box is a constructor

Since variables are now bound to boxes containing values, we must
change the code that for evaluating variables:
 ((var? M)

 (unbox (lookup (var-name M) env))) M)

We are finally ready to add the clause for assignment:
 ((setter? M)
 (set-box! (lookup (setter-lhs M) env)
 (MEval (setter-rhs M) env)))

Can Boxes Be Values?
● Yes. Many languages support some formulation of this concept. But the

details can be delicate because we must know from context whether a
variable x means its value or the enclosing box.

● Traditional “limited” approach: support call-by-reference as a parameter
passing mechanism. The formal parameter declaration includes “type”
information stating that call-by-reference should be used. Examples:
var parameters in Pascal, ref parameters in C++.

● Cleaner “comprehensive” approach: treat boxes as ordinary values (as in
ML) or, in lower level languages, pointers as values (as in C). But there
is a cost: these boxes/pointers must be explicitly dereferenced to get the
associated values. (C and other “algol-like” languages complicates
matters by automatically dereferencing variables in some [“right-hand”]
contexts but not in others [“left-hand contexts”].

● Conceptually, the ML convention is much simpler but it requires explicit
dereferencing (using the unary prefix operator !) whenever we want the
value of the variable.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

