6 Parameter Passing

In the last chapter we explored the semantics of language features that
are found in most programming languages, though sometimes in restricted
forms. In this chapter we explore a number of semantic variations that are
commonly found in programming languages. Once more, by modifying inter-
preters we are able to express semantic alternatives precisely and in a manner
that highlights their essential differences.

In this chapter we explore several areas of language design. In section 6.1 we
look at two models of arrays and similar data structures. In sections 6.2-6.5 we
study different mechanisms for the transmission of parameters to procedures.
Along the way, in section 6.4, we look at some of the implications of our choice
of expressed and denoted values. Finally, in section 6.6 we explore optional
parameters and keyword arguments.

6.1 Adding Arrays

Most programming languages include data structures composed of multiple
elements, such as arrays and records. Such structures are called aggregates.
The introduction of aggregates brings with it new choices in language design.

The primitive aggregate data types of Scheme are vectors, pairs, and strings.
Values of these types are typically represented by consecutive memory loca-
tions that contain their elements. When an aggregate value is passed to a
procedure, what is passed is a pointer to the first memory location of the
structure. We call this an indirect representation, since the values of aggre-
gate elements are obtained indirectly, by reference to the aggregate’s pointer.
Assignment to a binding containing an indirect aggregate simply changes the
pointer to the aggregate. In a direct aggregate representation, such an assign-
ment affects the aggregate elements directly.
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To illustrate these ideas, we add arrays to the defined language. To sup-
port arrays, we extend the language with special forms for creating array
bindings, accessing array elements, and assigning to array elements. We use
the following concrete and abstract syntax:

(form) ::= definearray (var) (exp) definearray (var len-exp)
(exp) ::= letarray (arraydecls) in (exp) letarray (arraydecls body)
| (array-exp) [(exp)] arrayref (array index)
| (array-exp) [{exp)] := arrayassign (array index
(exp) exp)

(array-exp) ::= (varref) | ({exp))
(arraydecls) ::= (arraydecl) {;(arraydecl)}*
(arraydecl) ::= (var) [{exp)] decl (var exp)

An array is a sequence of cells containing expressed values. Expressed values
include arrays and denoted values are still simply cells containing expressed
values as in section 5.5.

Array = {Cell(Expressed Value)}*
Expressed Value = Number + Procedure + Array
Denoted Value = Cell (Expressed Value)

The asterisk is meant to suggest the Kleene star (section 2.1). For our Scheme
implementation, arrays are represented as vectors whose first element is the
tag *array*; see figure 6.1.1.

Array indexing in our examples will be zero based, so a[0] refers to the first
element of array a. For example, with indirect arrays we obtain

--> define p = proc (b) b[0] := 3;
--> letarray a[2] in begin a[0] := 1; a[1] := 2; p(a); al0] end;
3

Figure 6.1.2 shows the core of an interpreter for handling arrays. In
eval-exp, the letarray, arrayref, and arrayassign cases are, of course,
new. The procedure apply-proc now expects args to be a list of denoted
values, so it is the responsibility of eval-rands, not apply-proc, to call
expressed->denoted (as in exercise 5.5.3.) The procedure eval-rands now
maps eval-rand across the operands. We introduce eval-rator, whose def-
inition starts out as eval-exp. The other cases are the same as in chapter 5.
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Figure 6.1.1  Array ADT

(define make-array
(lambda (length)
(let ((array (make-vector (+ length 1))))
(vector-set! array 0 ’*array*)
array)))

(define array?
(lambda (x)
(and (vector? x) (eq? (vector-ref x 0) ’*array*))))

(define array-ref
(lambda (array index)
(vector-ref array (+ index 1))))

(define array-set!
(lambda (array index value)
(vector-set! array (+ index 1) value)))

(define array-whole-set!
(lambda (dest-array source-array)
(let ((source-len (vector-length source-array)))
(if (> source-len (vector-length dest-array))
(error "Array too long for assignment:" source-array)
(letrec ((loop (lambda (n)
(if (< n source-len)
(begin
(vector-set! dest-array n (vector-ref source-array n))
(Loop (+ n 1)))M))
(loop 1))))))

(define array-copy
(lambda (array)
(let ((new-array (make-array (- (vector-length array) 1))))
(array-whole-set! new-array array)
new-array)))
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Figure 6.1.2 Interpreter for illustrating parameter-passing variations

(define eval-exp
(lambda (exp env)
(variant-case exp
(varref (var) (denoted->expressed (apply-env env var)))
(app (rator rands)
(apply-proc (eval-rator rator env) (eval-rands rands env)))
(varassign (var exp)
(denoted-value-assign! (apply-env env var) (eval-exp exp env)))
(letarray (arraydecls body)
(eval-exp body
(extend-env (map decl->var arraydecls)
(map (lambda (decl)
(do-letarray (eval-exp (decl->exp decl) env)))
arraydecls)
env)))
(arrayref (array index)
(array-ref (eval-array-exp array env)
(eval-exp index env)))
(arrayassign (array index exp)
(array-set! (eval-array-exp array env)
(eval-exp index env)
(eval-exp exp env)))

NS DD)

(define eval-rator
(lambda (rator env)
(eval-exp rator env)))

(define eval-rands
(lambda (rands env)
(map (lambda (rand) (eval-rand rand env)) rands)))

(define eval-rand
(lambda (exp env)
(expressed->denoted (eval-exp exp env))))

(define apply-proc
(lambda (proc args)
(variant-case proc
(prim-proc (prim-op) (apply-prim-op prim-op (map denoted->expressed args)))
(closure (formals body env) (eval-exp body (extend-env formals args env)))
(else (error "Invalid procedure:" proc)))))
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Figure 6.1.3  Auxiliaries for call-by-value with indirect arrays

(define denoted->expressed cell-ref)

(define denoted-value-assign! cell-set!)

(define do-letarray (compose make-cell make-array))
(define eval-array-exp eval-exp)

(define expressed->denoted make-cell)

Figure 6.1.2 introduces five new procedures that are not defined there.
These are denoted->expressed, denoted-value-assign!, do-letarray,
eval-array-exp, and expressed->denoted. By varying the definitions of
these procedures, we can model a variety of parameter-passing mechanisms.

For the indirect representation, the code for these auxiliary procedures is
shown in figure 6.1.3. To convert a denoted value to an expressed value we take
the contents of the cell, and to assign to a denoted value, we use cell-set!.
The procedure do-letarray first makes an array and then places it in a new
cell. Since arrays are expressed values, eval-array-exp is simply eval-exp.
Last, expressed->denoted just creates a cell containing the expressed value.

e Ezercise 6.1.1
Implement this interpreter and run some examples. []

Scheme and C both use the indirect model of arrays. Some other languages,
such as Pascal, use the direct model, which avoids indirect references to arrays.
Arrays are represented directly as denoted values and array elements may not
contain other arrays. In terms of our defined language, this means

Array = {Cell(Number + Procedure)}*
Expressed Value = Number + Procedure + Array
Denoted Value = Cell (Number) + Cell (Procedure) + Array

In the direct model, when an array is passed by value, the formal parameter
is bound to a copy of the sequence of values in the original array. Then if
the procedure performs array assignment, only the local copy of the array
is modified. If assignment to a destination containing an array is allowed,
the assigned value must be an array and its elements are copied into the
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Figure 6.1.4  Auxiliaries for call-by-value with direct arrays

(define denoted->expressed
(lambda (den-val)
(if (array? den-val) den-val (cell-ref den-val))))

(define denoted-value-assign!
(lambda (den-val exp-val)
(cond
((not (array? den-val)) (cell-set! den-val exp-val))
((array? exp-val) (array-whole-set! den-val exp-val))
(else (error '"Must assign array:" den-val)))))

(define do-letarray make-array)
(define eval-array-exp eval-exp)
(define expressed->denoted

(lambda (exp-val)
(if (array? exp-val) (array-copy exp-val) (make-cell exp-val))))

destination array. (We arbitrarily require the destination array to be at least
as long as the source array.)

Modeling direct arrays in Scheme is somewhat tricky because Scheme
uses the indirect model. The simplest way to do this is to model an ar-
ray with a vector, as in the indirect case. See figure 6.1.4. The procedure
denoted->expressed now dereferences a cell only when the denoted value is
not an array, while denoted-value-assign! performs a cell assignment or
a whole array assignment as appropriate to the type of denoted value. The
procedure do-letarray now simply makes an array, rather than making an
array and putting it in a cell. The procedure eval-array-exp remains as
before. Finally, if an expressed value is an array, expressed->denoted copies
it, otherwise as before it makes a cell containing the value. Finally, we modify
the array ADT to prohibit assignment of an array to an array element.

(define array-set!
(lambda (array index value)
(if (array? value)
(error "Cannot assign array to array element:" value)
(vector-set! array (+ index 1) value))))
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Figure 6.1.5 Example illustrating direct and indirect array models

letarray ul[3]; v[2]
in begin
ul0] :=5; ul1] := 6; ul2] := 4; v[0] := 3; v[1] := 8;
let p = proc (x)
begin
x[1] :=7; x := v; x[1] := 9
end
in p(u)
end
X u \) X u \Y
:::§>
€)
[516[4] [3]8] [5]7]4] [3[¢]
X u V X u A
[5]6[4] [5]6]4] [3[8] :(E) 13[9[4] [5]6[4] [3[8]

Figure 6.1.6 Effect of figure 6.1.5 using call-by-value

The difference between indirect and direct models of arrays is illustrated by
figure 6.1.5. For the indirect version, x and u are both bound to cells that point
at the first location of an array containing 5, 6, and 4 and v is bound to a cell
that points to the first location of an array containing 3 and 8. Executing the
assignment x[1] := 7 changes the 6 to a 7. Then executing x := v changes
the x cell to point at the same array as v does. Finally, executing x[1] := 9
then changes the 8 to a 9. See figure 6.1.6 (a). For the direct version, u
is bound to a sequence of cells containing its elements and x is bound to a
sequence of cells containing copies of the elements of u. Executing x[1] := 7
changes the 6 in x’s array to a 7. The assignment x := v replaces the contents
of x’s first two elements by a copy of v’s array. Once again, executing x[1] :=
9 changes the 8 to a 9, but this time v remains unchanged; see figure 6.1.6 (b).
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o Frercise 6.1.2

Implement the direct array interpreter and run some examples. []

o Frercise 6.1.3

Most languages that support direct arrays forbid assignment of one array
to another or arrays to be expressed values (section 6.4). Modify your inter-
preter accordingly to enforce these restrictions. Among other changes, modify
eval-rand so that an operand may be a variable referring to an array. [

6.2 Call-by-Reference
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When an operand is a variable and the called procedure assigns to the cor-
responding formal parameter, is this visible to the caller as a change in the
binding of its variable? The indirect model of arrays provides such visibil-
ity for arrays modified by array assignment, but for ordinary variables, with
modification by variable assignment, the answer to this question has been no.
If an assignment is made to a procedure’s call-by-value parameter, it affects
only the binding made when the procedure was called. For example, in

let p = proc (x) x := 5
in let a = 3;
b=4
in begin
p(a);
p(b);
+(a, b)
end

on each call to procedure p, the variable x is bound to a fresh cell. Therefore
the assignment to x does not affect a or b, and so the expression yields 7.
The effect of an assignment is always restricted to the scope of the assigned
variable. This is generally desirable, especially given the difficulties inherent
in understanding assignment. It is clear what code needs to be examined to
understand the effect of an assignment.

There are times, however, when it is necessary or convenient for a procedure
to be capable of assigning a binding passed by its caller, even though the
procedure may not be defined within the scope of the associated variable. For
example, it may be intended above that a and b both be set to 5, in which
case the expression should yield 10.
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This may be accomplished by a different parameter-passing technique in
which the arguments passed to p are the bindings of a and b, not their cor-
responding expressed values. This form of parameter passing is known as
call-by-reference.

Call-by-reference allows us to write some procedures that cannot be written
using call-by-value. The classic example is a procedure that swaps the contents
of its arguments. For example, using call-by-reference we can write

--> define swap =
proc (x, y)
let temp = 0
in begin temp := x; x := y; y := temp end;
--> define ¢ = 3;
--> let b = 4
in begin
swap(c, b);
b

end;

o Fzercise 6.2.1
Why doesn’t this work under call-by-value? []

In most languages with call-by-reference, references can be array elements
as well as variable bindings. If an array element is passed by reference to a
procedure and the procedure assigns to its corresponding formal parameter,
the effect is to assign a new value to the array element. Thus swap may be
used to exchange the values of array elements.

--> define b = 2;
--> letarray al3]

in begin
a[1] := 5;
swap(al[1], b);
al1]
end;

2

--> b;

5

6.2 Call-by-Reference 187
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In some languages, call-by-reference operands may be expressions other
than variable or data structure references (such as applications). In these
languages the value of the operand is placed in a new location, and assignments
to this location by the called procedure have no effect that is visible to the

caller. For example, consider

--> define ¢ = 3;
--> define p = proc (x) x := 5;
--> begin
p(addi(c));
c
end;

Here c refers to a location that initially contains 3. The assignment changes
the value of the binding of x from 4 to 5 but does not affect the binding of <.
In such cases call-by-value and call-by-reference behave the same way.

More than one call-by-reference parameter may refer to the same location:

--> let b = 3;
p = proc (x, y)
begin
X := 4;
y
end
in p(b, b);
4

The reason this yields 4 is that x and y both refer to the cell that is the
binding of b. This phenomenon is known as aliasing. Here x and y are aliases
(names) for the same location. Aliasing makes it very difficult to understand
programs. Generally, we do not expect an assignment to one variable to
change the value of another. Virtually all rules for reasoning formally about
programs are invalid in the presence of aliasing.

If references to array elements are passed as arguments, then in general it
is impossible to detect aliasing without costly run-time checks. For example,
swap(a[1], a[£(b)]) results in aliasing if and only if £(b) yields 1, which may
be impossible to predict.

The preceding definition of swap happens to work even if its parameters are
aliased, but aliasing can provide unpleasant surprises. The following version
of swap cleverly avoids the use of a temporary variable by assuming that its
arguments are integers.

Parameter Passing



--> define swap2 =

proc (x, y)
begin
x = +(x, P; 7 :i=-(x, y); x :=-(x, y)
end;
--> define b = 1;

--> define ¢

1]
N

--> swap2(b, c);
-=> b;

-=> c;

--> swap2(b, b);
-=> b;

The first call to swap2 works correctly. In the second call, however, x and
y are aliases for b, so b is assigned 2 + 2 = 4, and then 4 — 4 = 0. Clearly
swap2 works only if its arguments are not aliased.

How is call-by-reference to be modeled? The clue is that the denoted values
of the caller are the same as the denoted values of the procedure. Thus, if the
operand is a variable, we can pass its binding directly to the procedure, rather
than copying its contents to a new cell, as we did in call-by-value. So we can
obtain a simple version of call-by-reference by changing the production

(operand) ::= (exp)

to
(operand) ::= (varref)

and changing eval-rand to

(define eval-rand
(lambda (rand env)
(variant-case rand
(varref (var) (apply-env env var))
(else (error "Invalid operand:" rand)))))

What other forms can operands take? We have seen that when an array
reference appears as an operand in call-by-reference, we must pass a refer-
ence to the array element, not the value of the array element. In a typical
implementation, a reference to an array element is simply a pointer to the
element. Since it is not possible in Scheme to obtain a pointer directly to
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a vector element, we represent array elements by the ae record type, which
records the array and the index of an element within the array’s vector.

(define-record ae (array index))

So in general, an L-value in the language is either a cell or an array element;
in either case the contents of the L-value is an expressed value. We write this
as

L-value = Cell (Expressed Value) + Array Element (Expressed Value)

Denoted Value = L-value

Later we introduce denoted values that are not L-values.

We have explored two possibilities for call-by-reference operands: variables
and array references. We could restrict call-by-reference operands to these two
forms, but instead we adopt the more common design alternative, suggested
earlier in this section, that arbitrary expressions be allowed as call-by-reference
operands, with their values passed to the procedure in fresh cells as in call-
by-value. Hence we write the grammar for operands as

(operand) ::= (varref)
| (array-exp) [{exp)] arrayref (array index)
|

(exp)

To obtain an interpreter for call-by-reference, we start off with the inter-
preter for call-by-value and modify the auxiliary procedures that deal with
operands and denoted values, since those are the ones that change.

If we start with an interpreter for call-by-value with indirect arrays, we get
the auxiliary procedures shown in figure 6.2.1. Corresponding to the grammar
for operands, eval-rand has three cases. If the operand is a variable or an
array reference, the corresponding L-value should be passed directly to the
procedure; otherwise the expression should be evaluated and copied into a
new cell, as for call-by-value.

Since we have changed the set of denoted values (or at least the set of
representations of denoted values), we need to change the procedures that
deal with denoted values. There are only two of these: denoted->expressed
and denoted-value-assign!. We modify each of them to check what kind
of denoted value they are given and to do the right thing in each case. In this
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Figure 6.2.1  Auxiliaries for call-by-reference with indirect arrays

(define eval-rand
(lambda (rand env)
(variant-case rand
(varref (var) (apply-env env var))
(arrayref (array index)
(make-ae (eval-array-exp array env) (eval-exp index env)))
(else (make-cell (eval-exp rand env))))))

(define denoted->expressed
(lambda (den-val)
(cond
((cell? den-val) (cell-ref den-val))
((ae? den-val) (array-ref (ae->array den-val) (ae->index den-val)))
(else (error "Can’t dereference denoted value:" den-val)))))

(define denoted-value-assign!
(lambda (den-val val)
(cond
((cell? den-val) (cell-set! den-val val))
((ae? den-val) (array-set! (ae->array den-val) (ae->index den-val) val))
(else (error "Can’t assign to denoted value:'" den-val)))))

interpreter, the error lines in each of these two procedures should never be
executed, but they allow for extension later.

The combination of indirect aggregate representation and call-by-reference
is used occasionally, as in Modula-2, when passing an aggregate value whose
type is “hidden.” More commonly, call-by-reference is used in conjunction
with direct array representation, as with arrays passed as var parameters
in Pascal. A procedure that is passed a reference to a directly represented
aggregate treats references to the aggregate as if it were represented indirectly.
However, assignment to a binding that refers to a direct aggregate results in
copying elements of the source aggregate into the destination aggregate, not
mutation of the reference to the aggregate.

Figure 6.2.2 shows the effect of executing the program in figure 6.1.5 under
both the indirect and direct models. In the indirect model, x and u are both
bound to a cell containing a pointer to the first location in the array containing
the sequence 5, 6, and 4. The assignment x := v mutates that cell, so that
now u and x both point to the other array. (See figure 6.2.2 (a).) In the
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Figure 6.2.2 Effect of figure 6.1.5 using call-by-reference

direct model, u is bound to a sequence of cells containing its elements and x
is bound to a cell that refers to the cells of u. For the assignment x := v, the
contents of the cells of v are copied into the cells of u to which x refers. (See
figure 6.2.2 (b).) The final assignment x[1] := 9 mutates the second cell of
the array to which x points.

One advantage of call-by-reference is that it allows a procedure to “return”
more than one value by side-effecting some of its parameters. For example,
a procedure may take a call-by-reference parameter to which it assigns a
status code indicating what sort of exception, if any, it may have encountered.
This allows the procedure to return normal results in the usual way without
danger of confusion with error codes. There are other ways of returning
multiple results using call-by-value (for example, continuation-passing style
as in exercise 11.4.4 or variant records as used in exercise 5.5.8).

As we saw in section 6.1, passing structured objects such as arrays by
value requires copying the object. For reasons of efficiency structured objects
may be passed by reference, even when other arguments are passed by value.
Another alternative when call-by-value is used by default is to provide specific
declarations that force certain parameters to be passed by reference. If such
a declaration is forgotten when passing an array, an inefficient copy may
be performed without the programmer’s knowledge. Heap-allocated objects,
including Scheme’s cons cells and vectors, are always accessed via references.
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Figure 6.2.3 Program for exercise 6.2.2

letarray ul[3]; v[2]
in begin
ul0] := 5; ul1] := 6; ul2] := 4; v[0] := 3; v[1] := 8;
let p = proc (x, y)
begin
write(y);
x[1] := 7;
write(y);
X = v;
x[1] := 9;
write(y)
end
in begin
plu, ul1l);
write(ul1l)
end
end

e Ezercise 6.2.2
Using diagrams, as in figure 6.2.2, trace the program in figure 6.2.3 using
call-by-reference with indirect arrays and direct arrays. What value is printed
in each case? []

e Ezercise 6.2.3
Implement the interpreter of this section, which uses call-by-reference and
indirect arrays, using figure 6.2.1. []

o Ezercise 6.2.4
Modify the interpreter of this section to support call-by-reference with direct
arrays. What does it mean to pass an array element by reference with the
direct model? []
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6.3 Call-by-Value-Result and Call-by-Result
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It is often possible for compilers to allocate memory cells for call-by-value
parameters of a procedure in locations that the procedure’s code can access
directly. This contrasts with call-by-reference parameters, the locations of
which are not known until the procedure is called. This usually makes variable
references less efficient when call-by-reference is used. The call-by-value-result
parameter-passing technique combines the variable reference efficiency of call-
by-value with the ability, provided by call-by-reference, to return information
to the caller through parameters. The trick is to pass a pointer to the caller’s
cell, as in call-by-reference, and then to copy the contents of the cell in a
location local to the called procedure. The called procedure then uses the
local cell just as it would with call-by-value. Then, just before the procedure
returns, the contents of the local cell is copied back into the caller’s cell.

Call-by-value-result achieves more efficient variable reference than call-by-
reference at the expense of less efficient procedure call and return. In this
respect it is superior only if variables are referenced many times in a typical
call, as in a loop. Even in such cases, a compiler may be able to eliminate the
indirection of call-by-reference using optimization techniques that are beyond
the scope of this book.

There may, however, be other reasons to prefer call-by-value-result over
call-by-reference. One is that call-by-value-result does not suffer from the
aliasing problems of call-by-reference. For example, swap2 is correct if pa-
rameters are passed by value-result. Given the difficulties that aliasing poses
for formal proof and other approaches to reasoning carefully about programs,
call-by-value-result may be preferred when attempting to write highly reliable
programs.

In the absence of aliasing, call-by-value-result has the same effect as call-
by-reference. Therefore, some language specifications allow the use of either
call-by-reference or call-by-value-result. The compiler is then free to choose
for each parameter the passing technique that is optimum under the circum-
stances of the call. The danger is that if aliasing does occur, the results are
unpredictable. This may have serious consequences. For example, though a
program may at times alias two arguments, it might still work correctly be-
cause the compiler happens to choose call-by-value-result for one or both of
the arguments. If the program is then compiled using a different compiler,
or even using the same compiler after the program has been changed in ways
that affect optimization of the call, call-by-reference may be used for both
arguments. This exposes an error in a program that may have performed
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correctly for some time. To make matters worse, the error may not actually
cause damage for a long time, since the arguments may be array elements
that are aliased only under run time conditions that rarely occur.

Call-by-reference and call-by-value-result allow information to be passed
both to and from a called procedure. The call-by-result parameter-passing
technique is appropriate when a parameter is used only to pass information
from a procedure to its caller. It is simply a variation on call-by-value-result
in which the local L-value of a parameter is uninitialized. It may be used, for
example, to return an error code to the caller.

Call-by-value, call-by-value-result, and call-by-result are sometimes known
collectively as call-by-copy, since they all involve making a copy of a variable
binding when the operand is a variable reference.

o Frercise 6.3.1

Modify the parameter-passing of the call-by-reference with indirect arrays
interpreter so that parameters are passed by value-result. []

e Ezercise 6.3.2
Write a program (without using swap2) in which call-by-value, call-by-
reference, and call-by-value-result all yield different results. []

6.4 Expressed or Denoted Values?

The languages we have developed follow the tradition of Scheme and similar
languages in that they have a rich set of expressed values. This is important,
because the primary way in which computed information is returned is as the
value of a procedure: an expressed value.

In traditional imperative languages, however, expressions often occur on the
right-hand side of assignment statements, so the set of expressed values must
correspond to the set of values that are storable in a memory location. Many
languages were designed with the intention that they be implemented using a
stack-based run-time architecture. As we shall see in section 10.4, when such
an architecture is used, storing procedures or references to arrays may result
in dangling pointer problems. Also, storing arrays directly involves copying.
To avoid these problems, the set of expressed values is often restricted, even
when the set of denoted values is quite rich. In Pascal, for example, the
expressed values are scalars, such as integers and characters, but the denoted
values include arrays and procedures. We shall now see how this change in
perspective may be reflected by interpreters.
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The next language has the simplest possible set of expressed values:
Expressed Value = Number
but we make the set of denoted values much richer:
Denoted Value = L-value + Array + Procedure

So arrays and procedures are denoted values but not expressed values. This
does not cause much problem for arrays, since arrays are already introduced
with letarray, but procedures are more complicated. The fact that procedures
are expressed values is built into our syntax and interpreters. Procedures are
created as expressed values by proc, and retrieved as expressed values when
eval-exp evaluates the operator portion of an application.

Thus our first task is to change the language’s syntax. Since a procedure
(or array) can exist only as the binding of a variable, we make (operator) (or
(array-exp)) be a variable. In addition, we need to introduce a form, like let,
that allows us to introduce variables, without using procedure application. To
do this, we delete the productions

(exp) ::= proc (varlist) (exp) proc (formals body)
(operator) ::= (varref) | ({exp))
(array-exp) ::= (varref) | ({exp))

and replace them by the productions

(eXp) ::= letproc <pr0cdecls> in letproc (procdecls
(exp) body)
| local (decls) in (exp) local (decls body)
(operator) ::= (varref)
(array-exp) ::= (varref)

In order to have something interesting to pass to these procedures, we use
call-by-reference. Our starting point is the call-by-reference interpreter of
section 6.2, shown in figure 6.1.2 and figure 6.2.1. Figure 6.4.1 shows the
resulting interpreter. There are only two changes in the code of figure 6.4.1.
First, we replace eval-rator, which was eval-exp, with code that uses
apply-env, since the rator is known to be a variable reference.

The second change is the new construction letproc. The code for letproc
builds a list of closures, and then evaluates the body in a new environment
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Figure 6.4.1 Interpreter with denoted procedures and arrays

(define eval-exp
(lambda (exp env)
(variant-case exp
(letproc (procdecls body)
(let ((vars (map procdecl->var procdecls))
(closures (map (lambda (decl)
(make-closure
(procdecl->formals decl)
(procdecl->body decl)
env))
procdecls)))
(let ((new-env (extend-env vars closures env)))
(eval-exp body new-env))))
(local (decls body)
(let ((vars (map decl->var decls))
(exps (map decl->exp decls)))
(let ((new-env (extend-env vars
(map (lambda (exp)
(make-cell (eval-exp exp env)))
exps)
env)))
(eval-exp body new-env))))
D))

(define eval-rator
(lambda (rator env)
(let ((den-val (apply-env env (varref->var rator))))
(if (closure? den-val)
den-val
(denoted->expressed den-val)))))

in which each of the names is bound to the corresponding closure. See fig-
ure 6.4.1.

Since the set of denoted values has changed, we also need to review the aux-
iliary procedures introduced in section 6.1, which manipulate denoted values.
The results are shown in figure 6.4.2. The procedures denoted->expressed
and denoted-value-assign! can be the same as for the call-by-reference
case, since they already contain checks to make sure that only legal L-values
are dereferenced or mutated. Similarly, expressed->denoted and eval-rand
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Figure 6.4.2 Procedures for call-by-reference with denoted indirect arrays

(define denoted->expressed
(lambda (den-val)
(cond
((cell? den-val) (cell-ref den-val))
((ae? den-val) (array-ref (ae->array den-val) (ae->index den-val)))
(else (error "Can’t dereference denoted value:" den-val)))))

(define denoted-value-assign!
(lambda (den-val val)
(cond
((cell? den-val) (cell-set! den-val val))
((ae? den-val) (array-set! (ae->array den-val) (ae->index den-val) val))
(else (error "Can’t assign to denoted value:'" den-val)))))

(define do-letarray make-array)
(define eval-array-exp

(lambda (array-exp env)
(apply-env env (varref->var array-exp))))

remain unchanged. In letarray, the variables are bound directly to the ar-

rays, rather than to cells pointing to the arrays, so do-letarray need not

call make-cell. Since array expressions must be variables, eval-array-exp
can be simplified to use apply-env. This completes the interpreter.
Typically, languages that use a stack as their basic run-time structure (see

section 10.4) allocate their environments on the stack, so denoted values are

restricted to values that are storable on the stack. These typically include

single-word quantities, such as small integers and pointers, but may also in-
clude quantities that take up several words on the stack. In Pascal, for ex-
ample, even arrays are allocated on the stack, and are copied when they are

passed by value, an expensive operation. Denoted values typically include

cells, since these are represented by pointers and pointers are easily stored

on the stack. In section 10.4, we study the issue of stack allocation and the

representation of values on the stack in more detail.
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Imperative languages typically equate expressed values with those values
that are storable in a memory cell. Therefore the set of expressed values is
restricted to those that fit into a single machine word, such as small integers
and pointers. Languages vary in the specification of what values are storable,
particularly when those values are pointers. In Pascal, for example, pointers
refer to heap-allocated data structures, similar to cons cells in Scheme. C,
on the other hand, allows pointers to almost any type of value, including
procedures.

Scheme has a rich set of expressed values, as do a number of other func-
tional and almost-functional languages, including ML. Since Scheme uses an
indirect model of aggregates, most values are represented as pointers. Cells
(L-values) are not expressed values in Scheme. This is reflected in our need to
define a cell ADT, and in our simulation of array element pointers. Scheme’s
denoted values are just cells. ML, on the other hand, does not support vari-
able assignment. Instead, assignment is accomplished by explicit operations
on cells, just as we have used the cell ADT in our interpreters. Expressed
values then include cells. Since there is no variable assignment, there is no
reason to require denoted values to differ from expressed values, and therefore
denoted and expressed values are the same in ML.

We have only touched upon the study of the value structures of program-
ming languages. Studying the denoted and expressed values of a language
provides deep insight into its structure. A language’s value structure de-
termines a great deal of its expressive power and affects its efficiency and
implementation strategies. For example, when procedures are not expressed
values, many functional programming techniques (such as currying) are not
possible. On the other hand, when procedures are expressed values, they
must at times be heap allocated, which is generally less efficient than stack
allocation. Clever compilers are, however, often able to avoid apparent ineffi-
ciencies. If, for example, a Scheme procedure is bound directly using let and
every reference to it is in the operator position of an application, then it could
be stack allocated.

e Ezercise 6.4.1

Implement the interpreter of this section and test it with several programs. []

o Fzercise 6.4.2
The interpreter of this section, like our earlier ones, assumes that the initial
environment consists of cells containing primitive procedures. These cells can
thus be modified by variable assignment. Modify the interpreter to prevent
this by having the initial environment contain procedures rather than cells. []
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e Ezercise 6.4.3

Modify this interpreter to use call-by-value instead of call-by-reference. []

o Fzercise 6.4.4

Modify this interpreter to use a direct, rather than indirect representation of
arrays. [

o Ezercise 6.4.5

Modify this interpreter so that letproc defines its procedures recursively, as
letrecproc does. U

o Fzercise 6.4.6

Several times during the course of this chapter we have presented a grammar
rule that weakens the expressiveness of the language. For example, (array-exp)
was any (varref) or ({exp)) and now it can be only a (varref). Modify the
parser or the interpreter to support these restrictions. []

6.5 Call-by-Name and Call-by-Need

200

In section 4.3, we saw that lambda calculus expressions may be evaluated
using B-reduction. In this model, procedures are called by performing the
body of the procedure after the operands are substituted for each reference to
the corresponding variable. This substitution may require renaming of bound
variables (a-conversion) to avoid capture of variable references that occur
free in the operands. Such rewriting techniques, which require manipulation
of program text during evaluation, are heavily used in the theoretical study
of programming languages. In general, however, they are too inefficient for
practical use.

B-reduction does have one characteristic that is sometimes of practical im-
portance and is not shared by the parameter-passing techniques discussed so
far: the possibility of delaying (through normal order reduction) the evalua-
tion of operands until their values are needed. This may avoid unnecessary
or even nonterminating computation.

The price paid for avoiding non-termination is that if there are repeated
references to the same parameter, then the associated operand is reevaluated
with each reference. Another subtlety of this evaluation scheme is that the
index subexpression of an array reference is not evaluated until the time of
assignment. In the following example, the delay of array index evaluation is
critical.
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--> local p = proc (x)
begin

i:

o
N

X
end;
i=0
in letarray a[2]
in begin
al[0] := 1;
p(alil);
writeln(al[0], a[1])
end;
12

Delayed evaluation and assignment do not combine well, since it is hard
to understand the effect of assignment if it is unclear when the assignment
will happen. Nevertheless, this combination is supported by some languages,
notably Algol 60, and there are times when it is useful. A classic example is
Jensen’s device (exercise 6.5.4). Nevertheless, parameter-passing mechanisms
that use delayed evaluation are used in some programming languages, so they
are worth studying.

To delay operand evaluation without program rewriting, it is tempting sim-
ply to pass a reference to some representation such as an abstract syntax tree
(or compiled code) of the operand. However, it is necessary to prevent free
variables in the operand from being captured by declarations in the called
procedure. We have already encountered the variable capture problem when
creating procedures, and the solution is the same: close the operand in the
calling environment. We do this by forming a data structure that includes
both some representation of the text of the operand and also the bindings of
all variables that occur free in the operand. Closures created to delay eval-
uation are called thunks. For example, in section 4.5.2, we saw how thunks
(created as procedures of no arguments) may be used to delay evaluating a
stream’s tail.

Parameter passing in which argument evaluation is delayed using thunks
that are reevaluated with every variable reference is called call-by-name. To
develop an implementation for a call-by-name interpreter employing indirect
representation of arrays, we first identify the expressed and denoted values.
We begin with the language of section 6.1. For this language we had

Expressed Value = Number + Procedure + Array
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What should the denoted values be? As suggested above, these values
should include thunks that encapsulate an operand and its environment. But
what kind of value should invocation of such a thunk return? Since a formal
parameter may appear on the left-hand side of a variable assignment, the only
safe answer is that invocation of a thunk must return an L-value. We write
this as

Thunk = () — L-value

meaning that a thunk is a procedure of no arguments, which returns an L-
value when called. We represent a thunk, containing an operand and an
environment, using the following record type:

(define-record thunk (exp env))

As in the case of call-by-reference, the possible L-values include array ele-
ments:

L-value = Cell (Expressed Value) + Array Element (Expressed Value)

Since these L-values are the same as in section 6.2, we can use most of the
same auxiliary procedures.

We would also like to have local variables, either scalars or arrays, in proce-
dure bodies. It is unnecessary and inefficient to use the thunk mechanism for
these variables, so we can represent them in the usual way. Thus, the denoted
values are either L-values or thunks:

Denoted Value = L-value + Thunk

We can continue to use eval-exp from figure 6.1.2, which we extend with
local in figure 6.5.1. The call-by-name interpreter contains one big difference:
eval-rands does not evaluate the operands. Instead, it merely packages them
in thunks. For each variable operand, the packaging only occurs if it has been
declared by local. If the variable is a formal parameter of a procedure, then
it must already be bound to a thunk, in which case that thunk is used instead
of creating a new one.

A thunk is evaluated when the variable to which it is bound is evaluated.
Since the body of a thunk is an operand, eval-rand is used to evaluate the
thunk body. Since invocation of a thunk returns an L-value, we cannot use
eval-exp here. Instead, we use a grammar for operands that recognizes the
special case of an operand that is a variable or array reference. In this case
we can pass the corresponding L-value directly. This is the same situation as
in call-by-reference.
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Figure 6.5.1 Call-by-name interpreter

(define eval-exp
(lambda (exp env)
(variant-case exp
(local (decls body)
(let ((vars (map decl->var decls))
(exps (map decl->exp decls)))
(let ((new-env (extend-env vars
(map (lambda (exp)
(make-cell (eval-exp exp env)))
exps)
env)))
(eval-exp body new-env))))
(app (rator rands) ...)

(varref (var) ...)

(varassign (var exp) ...)

(letarray (arraydecls body) ...)
(arrayref (array index) ...)
(arrayassign (array index exp) ...)
D))

(define eval-rands
(lambda (rands env)
(map (lambda (rand)
(variant-case rand
(varref (var)
(let ((den-val (apply-env env var)))
(if (thunk? den-val)

den-val
(make-thunk rand env))))

(else (make-thunk rand env))))

rands)))
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Figure 6.5.2  Auxiliaries for call-by-name interpreter

(define eval-rand
(lambda (rand env)
(variant-case rand
(varref (var) (apply-env env var))
(arrayref (array index) (make-ae (eval-array-exp array env) (eval-exp index env)))
(else (make-cell (eval-exp rand env))))))

(define denoted->L-value
(lambda (den-val)
(if (thunk? den-val)
(eval-rand (thunk->exp den-val) (thunk->env den-val))
den-val)))

(define denoted->expressed
(lambda (den-val)
(let ((1-val (denoted->L-value den-val)))
(cond
((cell? 1-val) (cell-ref 1l-val))
((ae? 1-val) (array-ref (ae—->array l-val) (ae->index l-val)))
(else (error "Can’t dereference denoted value:" 1l-val))))))

(define denoted-value-assign!
(lambda (den-val exp-val)
(let ((1-val (denoted->L-value den-val)))
(cond
((cell? 1-val) (cell-set! 1-val exp-val))
((ae? 1-val) (array-set! (ae->array l-val) (ae->index 1l-val) exp-val))
(else (error '"Can’t assign to denoted value:" 1-val))))))

We write the grammar for operands as

(operand) ::= (varref)
| (array-exp) [{exp)] arrayref (array index)
|

(exp)

and we invoke thunks with a slightly modified version of the call-by-reference
eval-rand, shown in figure 6.5.2. If the thunk contains a variable or an array
reference, the corresponding L-value is returned. If the thunk contains a more
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complex expression, the best we can do is to evaluate it and put it in a new
cell. Because this mechanism tries to return an L-value rather than copying
its contents, call-by-name often coincides with call-by-reference.

All that remains is to define the auxiliary procedures used in figure 6.5.1.
Since these L-values are the same as in the call-by-reference case, we can do
this by adapting them to invoke thunks when necessary; see figure 6.5.2.

The procedure denoted->expressed first coerces its denoted value to an
L-value by using denoted->L-value to invoke the thunk if necessary. It then
dereferences the L-value, just as it did in the call-by-reference case. The pro-
cedure denoted-value-assign! works similarly. Since arrays are expressed
but not denoted, we use the version of do-letarray that calls make-cell.
Furthermore, since arrays are expressed values, array expressions may be
arbitrary expressions, and eval-array-exp must be eval-exp. Similarly,
eval-rator must be eval-exp. This completes the procedures that need to
be defined for the interpreter.

Ezercise 6.5.1

Since call-by-name is so much like call-by-reference, you might expect swap
to work under call-by-name. One example of an unpleasant surprise provided
by the interaction between delayed array index evaluation and assignment is
that swap may fail. What values are printed by the following expression?

letarray al[2]
in local i = 0
in begin
al0] := 1; al1] := 0;
swap(i, alil);
writeln(al[0], a[1])

end

O

FEzercise 6.5.2

What values are displayed when these two programs terminate?

local p = proc (x)
local a = *(x, x)
in begin
x := 5; write(a)
end

in p(3)
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[e]

[¢]

local a = 10
in local p = proc (x)
begin
a :=3; a :=+(x, 5); a := +(x, 5)
end

in begin p(+(a, a)); write(a) end

Replace “local a” by “let a” in both expressions. Now, what values are
printed? Remember that let is syntactic sugar for procedure application. []

Ezercise 6.5.3

Write an interpreter that implements procedure calling by substituting the
operands for the formal parameters of the procedures. What difficulties do
you encounter? []

Ezercise 6.5.4

Although the combination of assignment and delayed evaluation is problem-
atic, there are times when it is useful. The classic example is a procedure
that computes integral approximations. Write a procedure int that takes an
integrand expression E, an integration parameter z (a variable occurring free
in the integrand expression E), lower and upper bounds @ and b, and an in-
crement §, and returns an approximation to the integral using the rectangular
rule. That is,

b
int(E zabé) = Z 6-F %/Edm
z=a,a+4,... @

at(([(b—a)/61)-1)8

For example, assuming arithmetic operations are defined on floating point
numbers (written with decimal points) as well as integers, and a primitive
division procedure has been added to the initial environment, we could obtain
a rough approximation of fls 2z dz as follows.

--> define x = 0;

--> int(*(x, 2), x, 1, 5, quotient(l, 2));
22.0

=-=> x;

5.0
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[e]

The variable x could have been initialized to any value. Assignments to
x performed by int leave it with the value of the upper bound (or a bit
more). The trick of assigning to an argument that is the binding of a variable
occurring free in another argument is called Jensen’s device. How should int
be written using first-class procedures? []

When side effects are not involved, a delayed argument yields the same
value each time it is referenced. Repeated evaluation of such arguments is a
waste of effort. By saving the value obtained the first time such an argument
is needed, it is possible to avoid redundant computation. This is call-by-need.
A similar technique, memoization, was used in section 4.5.2 to avoid repeated
evaluation of a stream’s tail.

We can turn the call-by-name interpreter into a call-by-need interpreter by
memoizing the result of invoking a thunk, so that later evaluations of the same
variable will see the result instead of the thunk. To do this, we must change
the set of denoted values slightly:

Denoted Value = L-value + Memo
Memo = Cell (Thunk + L-value)

so that a denoted value is either an L-value or a memo, which is a cell con-
taining either a thunk or its resulting L-value. We represent a memo as a
record type:

(define-record memo (cell))

To incorporate this into the interpreter, we change eval-rands to pro-
duce memos and denoted->L-value to do the memoization. The procedure
denoted->L-value looks to see if its denoted value is a memo. If not, it must
be an L-value, so it is returned directly. Otherwise, it looks at the contents
of the cell. If the cell contains an L-value, it returns that L-value. If not, the
cell contains a thunk, so the thunk is invoked with eval-rand, returning an
L-value. This L-value is put in the cell, and then returned; see figure 6.5.3.

Ezercise 6.5.5
What do call-by-name and call-by-need print for this program?

local a = 10;
p = proc (x) +(x, x)
in p(+(begin write(a); a end, a))

O
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Figure 6.5.3  Auxiliaries for call-by-need interpreter

(define eval-rands
(lambda (rands env)
(map
(lambda (rand)
(variant-case rand
(varref (var)
(let ((den-val (apply-env env var)))
| (if (memo? den-val)
den-val
| (make-memo (make-cell
(make-thunk rand env))))))
(else
(make-memo (make-cell
(make-thunk rand env))))))
rands)))

(define denoted->L-value
(lambda (den-val)
(if (memo? den-val)
(let ((cell (memo->cell den-val)))
(let ((contents (cell-ref cell)))
(if (thunk? contents)
(let ((1-val (eval-rand
(thunk->exp contents)
(thunk->env contents))))
(cell-set! cell 1l-val)
l-val)
contents)))
den-val)))

6.6 Optional and Keyword Arguments
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In most languages, procedures usually require a fixed number of arguments,
and an exception is raised if they are called with the wrong number. If a
given argument is the same in most calls to a procedure, it is convenient to
omit this argument from these calls. This is possible if there is provision
for optional arguments. If an optional argument is omitted from a call, the
corresponding formal parameter is associated with a default value that is
specified by the called procedure. For example, it is usually possible to supply
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a port to an output procedure so that output may be directed to a chosen
file. In most cases, however, there is a “standard output port” to which most
output is directed, such as the terminal in an interactive system. Thus the
port argument of an output procedure is often optional and defaults to the
standard output port.

Procedures may have several optional arguments. Usually optional param-
eters must follow required parameters in formal parameter lists. If there are n
required parameters and m optional parameters, the procedure may be called
with 4 arguments, where n < ¢ < n + m, and the last n + m — ¢ parameters
assume their default values. Arguments that it would most often be conve-
nient to omit should be placed last, since omission of an argument requires
omission of all the following arguments. Scheme input and output procedures
take optional port arguments in this way.

Scheme procedures with optional arguments may be created using a syntax
in which an improper list is used to specify the formal parameters.

(lambda (wari ... varn . opt) body)

When a procedure created with this syntax is invoked with m > n arguments,
opt is bound to a (possibly empty) list of arguments n + 1 through m. This
generalizes the Scheme expression of the form (lambda var body) discussed in
section 1.3, which may be used to create procedures in which all arguments
are optional.

The Scheme optional-argument form does not allow the specification of
default values for optional arguments. We can characterize this feature by a
translation into Scheme as follows:

(lambda-opt (vary ... varn (opt; ezp;) ... (opty expg))
body)
= (lambda (vary ... varn . opts)

(let ((len-opts (length opts)))
(let ((opt; (if (< len-opts 1) ezp; (list-ref opts 0)))

(opt (if (< len-opts k) ezp, (list-ref opts k-1))))
body)))

This translation highlights some design decisions about the default values.
The expressions exp, appear inside the scope of the var;, but they could have
been placed outside that scope. Furthermore, the ezp, are evaluated each
time the procedure is called. Even if the ezp; were not in the scope of the
varj, we might get different values because of side-effects.
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e Ezercise 6.6.1
Consider the concrete and abstract syntax of (varlist).

(varlist) ::= ()
| ({vars) {,(keydecl)}*)
| ((keydecls))
(keydecls) ::= (keydecl) {,(keydecl)}*
(keydecl) ::= :(var) = (exp) keydecl (var exp)

Then modify the interpreter of figure 5.5.1 to support optional arguments.
When a procedure with optional formals is called, the expressions associated
with optional arguments are evaluated in the scope outside the procedure
to obtain their default values before evaluating the procedure body. It is a
run-time error to omit an argument that has not been given a default value.

--> (proc (x, :a = 1) +(x, a))(100);
101
--> let y =3
in (proc (x, :a =1, :b = +(2, y))
+(x, +(a, b))
(100, 10);
115

O

o Fzercise 6.6.2
The default values may appear inside or outside the scope of the non-optional
formals var;, and they may be evaluated at procedure creation time or at
procedure call time. This gives two design decisions, for a total of four possible
designs. Are all of them sensible? Give examples to show how the same
program would give different answers in each possible design. Modify the
equation for lambda-opt to express each design. []

In most languages, formal parameters are associated with arguments by
position: the value of the nth operand of an application is associated with
the nth variable in the procedure’s formal parameter list. It is also possible
to make this association by pairing operands with keywords that name the
corresponding formal parameter. It then does not matter in what order these
operands appear. In Lisp dialects that support keyword parameters, these
keywords are typically indicated with a colon followed by the associated vari-
able name. For example, a procedure make-window with keyword parameters

named height and width might be called with
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make-window(:height = 1, :width = +(2, 3)),
which is the same as
make-window (:width = +(2, 3), :height = 1).

Some languages use only keyword operands. In others, both positional and
keyword operands may be used in the same call, with the positional operands
occurring first. With keyword operands, the programmer must remember the
name but not the operand’s position, whereas for positional operands it is the
position, not the name, that matters.

Keyword operands add significantly to the visual complexity of applications,
unless they allow the number of operands to be significantly reduced. This is
the case when they are used in combination with optional operands. Then any
collection of optional operands may be used in a call. An optional operand
identified by a keyword is especially useful when the behavior of a procedure is
determined by a large number of parameters whose default values are suitable
most of the time. There may be many optional parameters that a programmer
does not even know exist, but a rarely needed parameter may be specified
using the appropriate keyword. Operating system commands often use some
form of keyword parameter mechanism.

o Fzercise 6.6.3
Modify the interpreter of exercise 6.6.1 to support keyword parameters by
extending the concrete and abstract syntax of (operands).

(operands) ::= ()
| ((exps) {,(keydecl)}*)
| ((keydecls))
(exps) ::= (exp) {,(exp)}”

For example,

-=> (proc (x, y) -(x, y)) (:y =3, :x = 2);
-1
--> (proc (x, :a =1, :b = +(2, 3))
+(x, +(a, b))
(100, :b = 2);
103

O
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6.7 Summary

212

When an assignment is made to a binding that contains an aggregate, if the
aggregate is represented indirectly, the pointer to the aggregate is replaced
with another value. If the aggregate is represented directly, the assignment is
directly to the elements of the aggregate.

Call-by-reference allows a procedure to return information to its caller by
assigning new values to its parameters. This is made possible by parameters
that are references to variable bindings or data structure elements belonging
to the caller. With call-by-reference it is possible for two parameters to refer
to the same location. This phenomenon, known as aliasing, makes it difficult
to understand programs. Call-by-value-result also allows information to be
returned to the caller through variables but avoids the aliasing problem.

Analysis of the expressed and denoted values of our languages play an
important role in the design of all these alternatives. Some languages are rich
in expressed values but poor in denoted values, and others have the opposite
mix.

Call-by-name delays evaluation of arguments until their values are needed,
as with leftmost evaluation in the lambda calculus. This is achieved by passing
thunks that close arguments over the calling environment. Call-by-name in
combination with assignment is dangerous, since it may be difficult to predict
just when assignments will take place. Call-by-need is a memoized variation
on call-by-name. It avoids the inefficiency of repeatedly evaluating the same
argument, but in combination with assignment it may not yield the same
results as call-by-name.

Optional arguments and keyword operands are useful when a procedure
has many parameters. With keyword operands the programmer need not
remember the order of the arguments, and optional arguments may be omitted
when a default value supplied by the procedure is appropriate.

Parameter Passing



