Comp 411
Principles of Programming Languages
Lecture 11
The Semantics of Recursion II

Corky Cartwright
February 5, 2018
Recursive Definitions

- Given a Scott-domain \mathcal{D}, we can write equations of the form:

$$f \triangleq E_f \quad (f(x_1, \ldots, x_n) \triangleq M_f \iff f \triangleq \lambda x_1, \ldots, x_n . M_f)$$

where E_f is an expression constructed from constants in \mathcal{D}, operations (continuous functions) on \mathcal{D}, and f.

- Example: let \mathcal{D} be the domain of Jam values. Then

$$\text{fact} \triangleq \text{map } n \text{ to if } n = 0 \text{ then } 1 \text{ else } n \ast \text{fact}(n - 1)$$

is such an equation.

- Such equations are called recursive definitions.
Solutions to Recursion Equations

Given a recursion equation:

\[f \equiv E_f \]

what is a solution? All of the constants and operations in \(E_f \) are known except \(f \). All functions in \(E_f \) are continuous.

A solution is any continuous function \(f \) such that \(f = E_f \).

But there may be more than one solution. We want to select the “best” solution \(f^* \). Note that \(f^* \) is an element of whatever domain \(D^* \) corresponds to the type of \(E_f \). In the most common case, it is \(D \to D \), but it can be \(D, D \to D, \ldots, D^k \to D, \ldots \). The best solution \(f^* \) (which always exists and is unique and computable) is the least solution under the approximation ordering in \(D^* \).
Constructing the Least Solution

How do we know that any solution exists to the equation $f = E_f$?

We will construct the least solution and prove it is a solution!

Since the domain D^* for f is a Scott-Domain, this domain has a least element \bot_{D^*} that approximates every solution to the equation.

Now form the function $F : D^* \to D^*$ defined by $F(f) = E_f$, or equivalently, $\rightarrow F = \lambda f . E_f$ where $\lambda f . E_f$ is monotonic and continuous (by a lemma we skipped).

Consider the sequence $S: \bot_{D^*}, F(\bot_{D^*}), F(F(\bot_{D^*})), \ldots, F^k(\bot_{D^*}), \ldots$

Claim S is an ascending chain (chain for short) in $D^* \to D^*$.

Proof. $\bot_D \leq F(\bot_{D^*})$ by the definition of \bot_D. If $M \leq N$ then $F(M) \leq F(N)$ by monotonicity. Hence, $F^k(\bot_D) \leq F(F^k(\bot_D))$ by induction on k. Q.E.D.

Claim: S has a least upper bound f^*.

Proof. Trivial. S is a chain in D^* and hence must have a least upper bound because D^* is a Scott-Domain. If D^* is a function domain, then f^* is continuous by definition.
Proving f^* is a fixed point of F

Must show: $F(f^*) = f^*$ where $F = \lambda f. E_f$.

Claim: By definition $f^* = \bigsqcup F^k(\bot_{D^*})$. Since F is continuous

$$F(f^*) = F(\bigsqcup F^k(\bot_{D^*})) = \bigsqcup F^{k+1}(\bot_{D^*}) = \bigsqcup F^k(\bot_{D^*}) = f^*.$$

Note: The second step above relies on the continuity of F and the third depends on the fact that $F^0(\bot_{D^*}) = \bot_{D^*} \leq F(\bot_{D^*})$.

Q.E.D.
Example

Look at factorial in detail by running the DrRacket stepper or conceptualizing strict continuous functions mapping D into D which can be represented as graphs (sets of pairs) over $D - \{⊥_D\}$.

Recall that D is the domain of Jam values.
How Can We Compute f^* Given F?

Need to construct $F^\infty(\bot)$ from F. Let

$$Y(F) = f^* = F^\infty(\bot)$$

Can we write code for Y?

Idea: use syntactic trick in Ω to build a potentially infinite stack of Fs.

- Preliminary attempt:
 $$\left(\lambda x. F(x\ x)\right) \left(\lambda x. F(x\ x)\right)$$
- Reduces to (in one step):
 $$F \left(\left(\lambda x. F(x\ x)\right) \left(\lambda x. F(x\ x)\right) \right)$$
- Reduces to (in k steps):
 $$F^k \left(\left(\lambda x. F(x\ x)\right) \left(\lambda x. F(x\ x)\right) \right)$$
What Is the Code for Y?

- In Haskell (or other language with call-by-name)
 \[Y = \lambda F. (\lambda x. F(x x))(\lambda x. F(x x)) \]

- Hence, $Y(FACT)$
 \[
 = (\lambda x. FACT(x x))(\lambda x. FACT(x x)) \\
 = FACT((\lambda x. FACT(x x))(\lambda x. FACT(x x))) \\
 = \lambda n. if\ n=0\ then\ 1 \\
 \quad else\ n^*((\lambda x. FACT(x x))(\lambda x. FACT(x x)))(n-1)
 \]
 implying $Y(FACT)$ reduces to a value!

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No!

- Why not? What about divergence? $Y(FACT)$

\[
= (\lambda x. FACT(x x))(\lambda x. FACT(x x)) \\
= FACT((\lambda x. FACT(x x))(\lambda x. FACT(x x))) \\
= FACT(FACT(\ldots)) \text{ (diverging like } \Omega)\]
Why Does Call-by-name Work?

By assumption G must have the form $\lambda f. \lambda n. M$

$$(\lambda F. (((\lambda x.F(x x)) (\lambda x.F(x x)))))\ G$$

$= G ((\lambda x.G(x x)) (\lambda x.G(x x)))$

$= (\lambda f. \lambda n. M) ((\lambda x. G(x x)) (\lambda x.G(x x)))$

$= \lambda n. M[f := (\lambda x. G(x x)) (\lambda x.G(x x))]$

If the evaluation M of does not require evaluating an occurrence of f, then x is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f = \lambda n. M$.

Exercise: how can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam? Hint: if M is a divergent term denoting a unary function $\lambda x. Mx$ is an “equivalent” term (called the (eta) conversion of M) that is not divergent! As a concrete example, assume that M is the term $M\Omega x$.