Comp 411
Principles of Programming Languages
Lecture 12
The Semantics of Recursion III & Loose Ends

Corky Cartwright
February 6, 2019
Call-by-name vs. Call-by-value Fixed-Points

Given a recursive definition \(f \equiv E_f \) in a call-by-value language where \(E_f \) is an expression constructed from constants in the base language and \(f \). What does it mean?

Example: let \(D \) be the domain of Scheme values. Then the base operations are continuous functions on \(D \) and

\[
\text{fact} = \text{map } n \text{ to if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n - 1)
\]

is a recursive definition of a function on \(D \).

In a call-by-name language \(\text{map } n \text{ to } \ldots \) is interpreted using call-by-name, the meaning of \(\text{fact} \) is

\[
Y(\text{map } f \text{ to } E_{\text{fact}})
\]

What if \(\text{map } (\lambda\text{-abstraction}) \) has call-by-value semantics? \(Y \) does not quite work because evaluations of form \(Y(\text{map } f \text{ to } E_f) \) diverge.
Defining Y in a Call-by-value Language

We want to define Y_v, a call-by-value variant of Y. Key trick: use η (eta)-conversion to delay the evaluation. In the mathematical literature on the λ-calculus, λ-conversion is often assumed as an axiom. In models of the pure λ-calculus, it typically holds.

Definition: η-conversion is the following equation:

$$M = \lambda x . \ M x$$

where x is not free in M. If the λ-abstraction used in the definition of Y has call-by-value semantics, then given the functional F corresponding to recursive function definition, the computation YF diverges. We can prevent this from happening by η-converting both occurrences of $F(x \ x)$ within Y.

What Is the Code for $\mathbf{Y_v}$?

$\lambda F. \ (\lambda x. (\lambda y. (F(x \ x)) y)) \ (\lambda x. (\lambda y. (F(x \ x)) y))$

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!
- Let G be some functional $\lambda f. \lambda n. M$, like FACT, for a unary recursive function definition. G and $\lambda n. M$ are values (λ-abstractions). Then $\mathbf{Y_v} \ G = (\lambda x. (\lambda y. (G(x \ x)) y)) \ (\lambda x. (\lambda y. (G(x \ x)) y)) = \lambda y. \ (G(((\lambda x. (\lambda y. (G(x \ x)) y))(\lambda x. (\lambda y. (G(x \ x)) y)))) y$ is a value. Under call-by-value, $\mathbf{Y_v} \ G$ is not a value.
- Hence, $G(\mathbf{Y_v} \ G) = (\lambda f. \lambda n. M)(\mathbf{Y_v} \ G) = \lambda n. M[f:=\mathbf{Y_v} \ G]$, which is a value.
- It is straightforward to prove (using conversion rules) that $\mathbf{Y_v} \ G = G(\mathbf{Y_v} \ G)$
- Disadvantage of $\mathbf{Y_v}$ vs. \mathbf{Y}: $\mathbf{Y_v}$ is arity-specific for recursive function definitions in languages like Jam that support multiple arguments in λ-expressions. (Note: it works for all curried function definitions.)
Loose Ends

• Meta-errors
• Read the notes!
• letrec (in notes)
Lazy JamVal: a Concrete Example

Consider Jam with call-by-value λ and lazy \texttt{cons}. What is the domain of data values? It consists of the flat domain of integers \mathbb{Z}_\perp augmented by lazy lists over \texttt{JamVal}s:

$$\text{JamVal} = \mathbb{Z}_\perp + \text{JamList}$$
$$\text{JamList} = \text{JamEmpty} + \text{cons}($$\text{JamVal}, \text{JamList}$$)$$

where \texttt{cons} is lazy (non-strict) in both arguments. Can we write a form of \texttt{Y} for recursively defining infinite non-empty \texttt{JamList}s? Yes!
Call-by-value Y for lazy lists

Recall the trick we used to define Y for call-by-value function definitions. We had to η-convert the application $F(x \ x)$ inside Y to make it a value. In this case, we similarly need to syntactically convert $F(x \ x)$ to an equivalent expression that is a value. In this case $F(x \ x)$ denotes a potentially infinite non-empty $JamList$. Hence, we need to convert $F(x \ x)$ to

$$\text{cons}(\text{first}(F(x \ x)), \text{rest}(F(x \ x)))$$

which is a value (corresponding to $\text{cons}(\bot, \bot)$). Hence, Y_{cons} is $\lambda F. G(G)$ where

$$G = \lambda x. \text{cons}(\text{first}(F(x \ x)), \text{rest}(F(x \ x)))$$

Try it in the Reference Interpreter for Assignment 3.
let Ycons := map F to
 let g := map x to cons(first(F(x(x))),rest(F(x(x)))) ; in g(g);
in first(Ycons(map zeros to cons(0, zeros)))
⇒ 0

let Ycons := map F to let g := map x to cons(first(F(x(x))),rest(F(x(x)))) ; in g(g);
 Yv := map F to let g := map x to map y to (F(x(x)))(y) ; in g(g);
in let sum := Yv(map s to map l to map k to if k = 0 then 0
 else first(l) + (s(rest(l)))(k-1));
 countup := Yv(map cu to map k to cons(k, cu(k+1)));
in (sum(countup(1)))(10)
⇒ 55