Call-by-name vs. Call-by-value Fixed-Points

Given a recursive definition $f \equiv E_f$ in a call-by-value language where E_f is an expression constructed from constants in the base language and f. What does it mean?

Example: let D be the domain of Scheme values. Then the base operations are continuous functions on D and

$$\text{fact} \equiv \text{map} \ n \ \text{to} \ \text{if} \ n = 0 \ \text{then} \ 1 \ \text{else} \ n \ast \text{fact}(n - 1)$$

is a recursive definition of a function on D.

In a call-by-name language $\text{map} \ n \ \text{to} \ ...$ is interpreted using call-by-name, the meaning of fact is

$$Y(\text{map} \ f \ \text{to} \ E_f)$$

What if map (λ-abstraction) has call-by-value semantics? Y does not quite work because evaluations of form $Y(\text{map} \ f \ \text{to} \ E_f)$ diverge.
Defining Y in a Call-by-value Language

We want to define Y_v, a call-by-value variant of Y. Key trick: use η(eta)-conversion to delay the evaluation. In the mathematical literature on the λ-calculus, η-conversion is often assumed as an axiom. In models of the pure λ-calculus, it typically holds.

Definition: η-conversion is the following equation:

\[M = \lambda x . \ M x \]

where x is not free in M. If the λ-abstraction used in the definition of Y has call-by-value semantics, then given the functional F corresponding to recursive function definition, the computation YF diverges. We can prevent this from happening by η-converting both occurrences of $F(x\ x)$ within Y.
What Is the Code for Y_v?

\[\lambda F. \ (\lambda x. (\lambda y. (F(x \ x) \ y))) (\lambda x. (\lambda y. (F(x \ x) \ y))) \]

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!
- Let G be some functional $\lambda f. \lambda n. M$, like FACT, for a recursive function definition. G and M are values (λ-abstractions). Then

\[Y_v G = \lambda x. (\lambda y. (G(x \ x) \ y)) (\lambda y. (G(x \ x) \ y)) = \lambda y. (G((\lambda y. (G(x \ x) \ y)) (\lambda y. (G(x \ x) \ y))) \ y) \]

is a value.
- Hence, $G(Y_v G) = (\lambda f. \lambda n. M) (Y_v G) = \lambda n. M[f:=Y_v G]$, which is a value.
- It is straightforward to prove (using conversion rules) that

\[Y_v G = G(Y_v G) \]

- Disadvantage of Y_v vs. Y: Y_v is arity-specific.
Loose Ends

- Meta-errors
- Read the notes!
- \texttt{letrec} (in notes)