Comp 411
Principles of Programming Languages
Lecture 12
The Semantics of Recursion III & Loose Ends

Corky Cartwright
February 6, 2019
Call-by-name vs. Call-by-value Fixed-Points

Given a recursive definition \(f \equiv E_f \) in a call-by-value language where \(E_f \) is an expression constructed from constants in the base language and \(f \). What does it mean?

Example: let \(D \) be the domain of Scheme values. Then the base operations are continuous functions on \(D \) and

\[\text{fact} \equiv \text{map } n \text{ to } (\text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n - 1)) \]

is a recursive definition of a function on \(D \).

In a call-by-name language \(\text{map } n \text{ to } \ldots \) is interpreted using call-by-name, the meaning of \(\text{fact} \) is

\[Y(\text{map } f \text{ to } E_f) \]

What if \(\text{map} \) (\(\lambda \)-abstraction) has call-by-value semantics? \(Y \) does not quite work because evaluations of form \(Y(\text{map } f \text{ to } E_f) \) diverge.
Defining Y in a Call-by-value Language

We want to define Y_v, a call-by-value variant of Y. Key trick: use η (eta)-conversion to delay the evaluation. In the mathematical literature on the λ-calculus, λ-conversion is often assumed as an axiom. In models of the pure λ-calculus, it typically holds.

Definition: η-conversion is the following equation:

$$M = \lambda x . \ M x$$

where x is not free in M. If the λ-abstraction used in the definition of Y has call-by-value semantics, then given the functional F corresponding to recursive function definition, the computation YF diverges. We can prevent this from happening by η-converting both occurrences of $F(x\ x)$ within Y.
What Is the Code for Y_v?

\[
\lambda F. \ (\lambda x. (\lambda y. (F(x \ x))y)) \ (\lambda x. (\lambda y. (F(x \ x))y))
\]

- Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? Yes!
- Let G be some functional $\lambda f. \lambda n. M$, like FACT, for a recursive function definition. G and $\lambda n. M$ are values (λ-abstractions). Then
 \[
 Y_v \ G = (\lambda x. (\lambda y. (G(x \ x))y)) \ (\lambda x. (\lambda y. (G(x \ x))y)) = \lambda y. (G((\lambda x. (\lambda y. (G(x \ x))y))(\lambda x. (\lambda y. (G(x \ x))y))))
 \]
 is a value. Under call-by-value, $Y \ G$ is not a value.
- Hence, $G(Y_v \ G) = (\lambda f. \lambda n. M)(Y_v \ G) = \lambda n. M[f:=Y_vG]$, which is a value.
- It is straightforward to prove (using conversion rules) that
 \[
 Y_v G = G(Y_v G)
 \]
- Disadvantage of Y_v vs. Y: Y_v is arity-specific in languages like Jam that support multiple argument in λ-expressions.
Loose Ends

• Meta-errors
• Read the notes!
• letrec (in notes)