Comp 411
Principles of Programming Languages
Lecture 5
Syntactic Interpreters

Corky Cartwright
January 16, 2019
A Syntactic Interpreter for LC

• Recall our definition of the LC language:

\[M ::= x | n | (\text{lambda} \ x \ M) | (M \ M) | (+ \ M \ M) \]

where \(x \) is any variable in \textbf{Var} and \(n \) is a number (integer) in \textbf{Num}. A \textit{proper} LC program is an LC expression \(M \) that is \textit{closed}, i.e., contains no \textit{free} variables. An LC program is any LC expression.

• This is conventional CFG definition but it parallels an abstract syntax definition (trees) because all constructed (non atomic) expressions are enclosed in parentheses, showing the precise structure of the corresponding AST.

• The set \(R \) of abstract representations is defined by the equation:

\[R = (\text{make-var} \ Var) | (\text{make-const} \ Num) | (\text{make-proc} \ Var \ R) | (\text{make-app} \ R \ R) | (\text{make-add} \ R \ R) \]

where we have defined the following Scheme data types

\begin{verbatim}
(define-struct var (name))
(define-struct const (number))
(define-struct proc (param body))
(define-struct app (rator rand))
(define-struct add (left right))
\end{verbatim}
Syntactic Interpretation

• What does syntactic interpretation do? Transform ASTs to values.

• What is a value? An AST representing a data constant.

• Syntactic interpretation reduces the AST for a complete program to a value. We arrange our evaluation rules so that every expression in the chain of expressions produced by the reduction process is a complete program. Our semantics simply rewrites programs until the result is a value.

• What is a value? An AST representing a data constant. In LC (which a subset of Scheme), a value V is either a number or a procedure:
 \[V ::= n \mid (\text{lambda} \ x \ M) \]

• What are the Scheme evaluation rules (from Comp 210) that are relevant to LC?
A Syntactic Interpreter for LC cont.

Basic Rules of Evaluation for *call-by-value* (universal in mainstream languages)

- Rule 1: For applications of the binary operator + to two arguments that are numbers, replace the application by the sum of the two arguments (a number).

- Rule 2: For applications of a lambda-expression to a value (defined below), substitute the argument for the parameter in the body, *i.e.*,

\[
((\text{lambda } x \ M) \ V) \quad ----> \quad M[x := V]
\]

where \(M[x := V] \) means \(M \) with all *free* occurrences of \(x \) replaced by \(V \).

- Observation: the definition of *value* has a major impact on evaluation.

- What happens if we define

\[
V ::= n \mid v \mid (\text{lambda } x \ V)
\]

- Some evaluation strategies for the untyped lambda-calculus essentially do this, but they have not proven relevant to defining the semantics of real programming languages (except Haskell). Why?

- What if we allow arguments in procedure application reductions that aren’t *values*?

Example:

\[
(((\text{lambda } y \ 5) \ ((\text{lambda } x \ (x \ x)) \ (\text{lambda } x \ (x \ x))))
\]

- This is a sensible choice in *functional* languages that prohibit side effects (the values of bound variables and fields never change). Haskell does this.
Combining evaluation rules:

- Given an LC expression, we evaluate it by repeatedly applying the preceding rules until we get an answer.
- What happens when we encounter an expression to which more than one rule applies? In our framework, the leftmost rule always takes priority.
- Other strategies are possible. Some “syntactic” (rewrite-rule-based) semantics for complex languages define formal syntactic rules (called evaluation contexts) to determine which reduction is done first.
In Rule 2 (called “beta-reduction” in the program semantics literature), we confined substitution in the definition of $M[x := V]$ to the *free* occurrences of x in M. If we had not confined substitution to *free* occurrences, the rule would have produced strange results, destroying the meaning of bound variables in M. If we use Rule 2 to transform programs (replacing “equals by equals”), we must be much more careful in how we perform the substitution of V for x in M. In particular, free variables in V can be “captured in replaced occurrences of x in M. Consider the following example:

$$(((\lambda x (\lambda y x)) \ y)$$

If we perform naïve beta-reduction replacing all free occurrences of x in

$$((\lambda x (\lambda y x)) \ y)$$

by y, we get

$$((\lambda y x)) \ [x := y] \rightarrow (\lambda y y)$$

which is wrong! The occurrence of y in $[x := y]$ is *free*. Presumably, it is bound somewhere in the context surrounding

$$(((\lambda x (\lambda y x)) \ y)$$

When we substitute y for the free occurrence of x in $(\lambda y x)$, it becomes bound by a local definition of y. The solution is to rename the variable introduced in the local definition of y as a fresh variable name, say z. Hence,

$$(\lambda y x)) \ [x := y] \rightarrow (\lambda z y)$$
Safe Substitution

• This revised substitution process (renaming local variables that would otherwise capture free occurrences in the expression being substituted) is called safe substitution. The results produced by safe substitution are non-deterministic in a trivial sense because the choices for the new names of renamed local variables are arbitrary (as long as they are fresh, i.e., distinct from existing variables in the program text involved in the substitution).

• **Question to Ponder:** Assume that we use deBruijn notation (static distance coordinates in LC instead of named variables. How should we define substitution, i.e., what happens to the deBruijn indices during the substitution process?

• **Further Reading:** The safe substitution process hardly qualifies as a simple local modification of the program being reduced. In the literature on reduction in the lambda calculus, there are some interesting papers that explicate the details of the safe substitution operation breaking it down into smaller steps that truly are simple local modifications. See https://dl.acm.org/citation.cfm?id=96712