
Comp 411

Principles of Programming 

Languages 

Lecture 6

Implementing Syntactic 

Interpreters

Corky Cartwright

February 5, 2021



A Syntactic Evaluator
Can we translate our syntactic reduction rules into a program?

;; AST → V  AST        ; an illegal program can return an AST
(define eval
(lambda (M)  ; M is an AST
(cond ; case split on form of M
((var? M)  M)                 ; M is a free var (stuck!)
((or (const? M) (proc? M)) M)  ; M is a value
((add? M) ; M has form (+ l r)
(const-add (eval (add-left M)) (eval (add-right M))))

(else                         ; M has form (N1 N2)
(apply (eval (app-rator M)) (eval (app-rand M)))))))

;; A═►B A → B
(define apply (lambda (a-proc a-value)
(cond
((not (proc? A-proc))         ; ill-formed app
(make-app a-proc a-value))  ; return stuck state

(else                         ; return reduced, substituted body
(eval
(subst a-value (proc-param a-proc)(proc-body a-proc)))))))



Coding Substitution
;; V Sym R → R   Blindly substitutes v for x in M (ignoring capture)
(define subst
(lambda (v x M)
(cond
[(var? M) (cond [(equal? (var-name M) x) v] [else M])]
[(const? M) M]
[(proc? M))
(cond [(equal? x (proc-param M)) M]

[else (make-proc (proc-param M)
(subst v x (proc-body M)))])]

[(add? M) (make-add (subst v x (add-left M))
(subst v x (add-right M)))] 

[else    ;; M is (N1 N2) 
(make-app (subst v x (app-rator M))

(subst v x (app-rand M)))])))

Is subst safe? No! It is oblivious to free variables in M.  Does it work in context?

Almost; it fails in some cases for illegal programs.  Not all programs with free 

variables are detected.  

Exercise: Revise subst so that it is safe. Note that blind substitution works as long as 

our top-level M is well-formed and contains no free variables. Why?



Comments on Syntactic Interpreter

We still need to define const-add. What does const-add do on non-const values?  

The key property of this evaluator is that it only manipulates (abstract) syntax.  It 

specifies the meaning of LC by mechanically transforming the syntactic 

representation of a program.  This approach only assigns a satisfactory meaning to 

complete LC programs, not to subtrees of complete programs.  Counter-example:

((lambda (x) (+ x y)) 7)
If const-add mirrored syntactic evaluation, then it would return the abstract syntax 

tree for (+ 7 y) which is an irreducible “stuck” state—not a value—and the correct 

choice if we are strictly implementing syntactic evaluation.  A more attractive 

alternative that is an elaboration of  syntactic interpretation is to generate a run-time 

error because y is not a value. In a context where y is bound to (the abstract syntax 

tree for) 5, it returns (the abstract syntax tree for) 12; which is not (the abstract syntax 

tree for) (+ 7 y) or a run-time error.  From a mathematical perspective, The 

meaning of sub-expressions should be defined so that meaning ⟦...⟧ is compositional,

i.e.
⟦ (c M1 … Mk )⟧ = ⟦ c ⟧ ( ⟦ M1⟧, … , ⟦ Mk⟧)

Syntactic interpretation utterly fails in this regard because it cannot cope 

with free variables. 



Can We Make Syntactic Evaluation Compositional?

Since syntactic evaluation does not assign meaning to components of abstract syntax 

trees, it technically cannot satisfy the compositionality criterion.  The use of “stuck 

states” is a cute formal trick but fails the compositionality test (which is not 

considered an important issue according to current fashion).  But we can partially 

patch syntactic evaluation by transforming a “stuck state” result to a corresponding 

error element (as determined by our compositional meaning).

So the stuck state result (+ 7 y) would be converted to the error element 

corresponding to an “unbound variable”.  Similarly, the stuck state

(/ 7 0) might be converted to a “division by zero” error element.

We would also have to modify our syntactic evaluator to abort the computation when 

a sub-computation generates an error element and return that error element as the 

result.

This patched interpreter is still not compositional because no meanings can be 

assigned to subexpressions with free variables other than error elements but free 

variables within expressions are not necessarily errors.   In the evaluation process, 

some free variables are replaced by values before they are evaluated.



Toward Semantic Interpretation

From a software engineering perspective, what is wrong with our syntactic 

interpreter? How fast is subst?  How can we do better? 

Avoid unnecessary substitutions by keeping a table of bindings, which we will 

call an environment.

;; Binding = (make-Binding Sym V)  ; Note: Sym not Var [coding detail]

;; Env = (listOf Binding) 

;; R Env → V

(define eval

(lambda (M env)

(cond

((var? M) (lookup (var-name M) env)) ((or (const? M)(proc? M)) M)

((add? M) ; M has form ‘(+ l r)’ in LC syntax

(const-add (eval (add-left M) env) (eval (add-right M) env)))

(else     ; M has form ‘(N1 N2)’ in LC syntax

(apply (eval (app-rator M) env) (eval (app-rand M) env) env)))))

;; Proc V Env → V

(define apply

(lambda (a-proc a-value env)

(eval (proc-body a-proc) (cons ((proc-param a-proc) a-value) env)))



• In essentially all functional languages for software development, 

there is alternate special notation for 

((lambda x M) N)

namely

(let [(x N)] M) Scheme

or

let x := N; in M Jam

• This alternate notation is literally an abbreviation for the explicit 

lambda form

• For this alternate notation, the beta-reduction rule has the form

(let [(x V)] M) ⇒ M[x := V] Call-by-value

(let [(x N)] M) ⇒ M[x := N] Call-by-name



Gotcha's in Naive Semantic Interpretation

• What if a-proc contains free variables (which can happen in legal 

programs)? Do we always get the right answer (as defined by 

syntactic interpretation)?

Illustration:

• (let [(a 5)]

(let [(app-to-a (lambda (f) (f a))]

(let [(a 10)]

(+ a (app-to-a (lambda (x) x))))))

• What goes wrong ?  Should a lambda-expression really evaluate to itself?   

This is the most serious and most common blunder in writing  

interpreters.

• Think about how you might fix the problem.  Hint:  what information is 

missing in env when a-proc is evaluated?  Remember, you want the same 

result as if you were performing syntactic interpretation. 


