
C411 – Type Inference Study Guide

Corky Cartwright

Produced: March 18, 2017

1 Synopsis of Implicitly Polymorphic Jam

The syntax of (Implicitly) Polymorphic Jam is a restriction of the syntax of
untyped Jam. Every legal Polymorphic Jam program is also a legal untyped
Jam Program. But the converse is false, because there may not be a valid typing
for a given untyped Jam program.

1.1 Abstract Syntax

The following grammar describes the abstract syntax of Polymorphic Jam. Each
clause in the grammar corresponds directly to a node in the abstract syntax
tree. The let construction has been limited to a single binding for the sake
of notational simplicity. It is straightforward to generalize the rule to multiple
bindings (with mutual recursion). Note that let is recursive.

M ::= M (M · · ·M) | P (M · · ·M) | if M then M else M | let x := M in M
| V

V ::= map x · · ·x to M | x | n | true | false | null

n ::= 1 | 2 | . . .
P ::= cons | first | rest | null? | cons? | + | - | / | * | = | < |
<= | <- | + | - | ~ | ref | !

x ::= variable names

In the preceding grammar, unary and binary operators are treated exactly
like primitive functions.

Monomorphic types in the language are defined by τ , below. Polymorphic
types are defined by σ. The → corresponds to a function type, whose inputs
are to the left of the arrow and whose output is to the right of the arrow.

σ ::= ∀α1 · · ·αn. τ
τ ::= int | bool | unit | τ1 × · · · × τn → τ | α | list τ | ref τ
α ::= type variable names

1

2

1.2 Type Checking Rules

In the following rules, the notation Γ[x1 : τ1, . . . , xn : τn] means the Γ \
{x1, . . . , xn} ∪ {x1 : τ1, . . . , xn : τn} and Γ′ abbreviates Γ[x1 : τ ′

1, . . . , xn : τ ′
n].

Note that Γ\{x1, . . . , xn}means Γ less the type assertions (if any) for {x1, . . . , xn}.

Γ[x1 : τ1, . . . , xn : τn] ` M : τ

Γ ` map x1 . . . xn to M : τ1 × · · · × τn → τ
[abs]

Γ ` M : τ1 × · · · × τn → τ Γ ` M1 : τ1 · · · Γ ` Mn : τn

Γ ` M (M1 · · ·Mn) : τ
[app]

Γ ` M1 : bool Γ ` M2 : τ Γ ` M3 : τ

Γ ` if M1 then M2 else M3 : τ
[if]

Note that there are two rules for let expressions. The [letmono] rule corre-
sponds to the let rule of Typed Jam; it places no restriction on the form of the
right-hand side M1 of the let binding. The [letpoly] rule generalizes the free
type variables (not occurring in the type environment Γ) in the type inferred
for the right-hand-side of a let binding – provided that the right-hand-side
M1 is a syntactic value: a constant like null or cons, a map expression, or a
variable. Syntactic values are expressions whose evaluation is trivial, excluding
evaluations that allocate storage.

Γ[x : τ] ` x : τ

Γ′ ` M1 : τ ′
1 . . . Γ′ ` Mn : τ ′

n Γ′ ` M : τ

Γ ` let x1 := M1; . . .; xn := Mn; in M : τ
[letmono]

Γ′ ` M1 : τ ′
1 . . . Γ′ ` Mn : τ ′

n Γ[x1 : CM1(τ
′
1, Γ), . . . , xn : CMn(τ ′

n, Γ)] ` M : τ

Γ ` let x1 := M1; . . .; xn := Mn; in M : τ
[letpoly]

Γ[x : ∀α1, . . . , αn. τ] ` x : O(∀α1, . . . , αn. τ, τ1, . . . , τn)

The functions O(·, ·) and C·(·, ·) are the keys to polymorphism. Here is how
C·(·, ·) is defined:

CV (τ,Γ) := ∀{FTV(τ)− FTV(Γ)}. τ

CN (τ,Γ) := τ

where V is a syntactic value, N is an expression that is not a syntactic value, and
FTV(α) means the “free type variables in the expression (or type environment)
α”.

When closing over a type, you must find all of the free variables in τ that are
not free in any of the types in the environment Γ. Then, build a polymorphic
type by quantifying τ over all of those type variables.

3

To open a polymorphic type

∀α1, . . . , αn. τ,

substitute any type terms τ1, . . . , τn for the quantified type variables α1, . . . , αn:

O(∀α1, . . . , αn. τ, τ1, . . . , τn) = τ[α1:=τ1,...,αn:=τn]

which creates a monomorphic type from a polymorphic type. For example,

O(∀α. α → α, τ) = τ → τ

1.3 Types of Primitives

The following table gives types for all of the primitive constants, functions, and
operators. The symbol n stands for any integer constant. Programs are type
checked starting with a primitive type environment consisting of this table.

true bool
false bool

n int
null ∀α. list α

cons ∀α. α× list α → list α
first ∀α. list α → α
rest ∀α. list α → list α

cons? ∀α. list α → bool
null? ∀α. list α → bool

= ∀α. α× α → bool
!= ∀α. α× α → bool

+ int× int → int
- int× int → int
* int× int → int
/ int× int → int

< int× int → bool
> int× int → bool

<= int× int → bool
>= int× int → bool

(unary) - int → int
(unary) + int → int
(unary) ˜ bool → bool

<- ∀α. refα× α → unit
ref ∀α. α → refα
! ∀α. refα → α

1.4 Typed Jam

The Typed Jam language used in Assignment 5 (absent the explicit type infor-
mation embedded in program text) can be formalized as a subset of Polymor-
phic Jam. For the purposes of these exercises, Typed Jam is simply Polymorphic
Jam less the letpoly inference rule which prevents it from inferring polymorphic
types for program-defined functions.

2 Exercises

Task 1: Prove the following type judgements for Typed Jam or explain why
they are not provable:

4

1. Γ0 |- (map x to x(10))(map x to x) : int

2. Γ0 |- let fact := map n to if n=0 then 1 else n*(fact(n-1));
in fact(10)+fact(0) : int

3. Γ0 |- (map x to 1 + (1/x))(0) : int

4. Γ0 |- (map x to x) (map y to y) : (int -> int)

5. Γ0 |- let id := map x to x; in id(id) : (int -> int)

Task 2: Are the following Polymorphic Jam programs typable? Justify your
answer either by giving a proof tree (constructed using the inference rules for
PolyJam) or by showing a conflict in the type constraints generated by matching
the inference rules against the program text.

1. let listMap := map f,l to

if null?(l) then null

else cons(f(first(l)), listMap(f, rest(l)))

in listMap(first,null);

2.
let length := map l to if null?(l) then 0

else 1 + length(rest(l));

l := cons(cons(1,null),cons(cons(2,cons(3,null)),null));

in length(l)+length(first(l))

Task 3: Give a simple example of an untyped Jam expression that is not
typable in Typed Jam but is typable in Polymorphic Jam.

3 Solutions to Selected Exercises

Task 1 : The first four expressions are typable in Typed Jam, but the fifth is
not.

1. Tree 1:

Γ0[f:int → int] ` 10:int Γ0[f:int → int] ` f:int → int

Γ0[f:int → int] ` f(10):int
[app]

Γ0 ` map f to f(10):(int → int) → int
[abs]

Tree 2:

Tree 1
Γ0[x:int] ` x:int

Γ0 ` map x to x:int → int
[abs]

Γ0 ` (map f to f(10))(map x to x):int
[app]

2. Type Inference Proof Omitted.

