Evaluating Functional Scheme Programs

Comp 210

Spring 2001

Contents

1 Conventions
2 Evaluating Expressions
2.1 Values are values, are values,
2.2 Conditionals. Lo e
2.2.1 TheLawsofif
222 The Lawsofcond
2.3 The Laws of Application L 0o
2.3.1 Primitive applications Lo o Lo
2.3.2 lambda applications L Lo
3 Evaluating definitions
3.1 Rulesforlocal. e

U B W W NN

1 Conventions

FEvaluating an expression means finding a value for that expression. We use a step-by-step
process to repeatedly simplify an expression until it is so simple that it is a value. Evaluating
a program means evaluating each of its expressions (all but the last of which are definitions)
in turn.

A law of the form

P=Q

where P and () are program fragments (expressions or sequences of expressions) means that
P and @ have the same behavior; one can be substituted for the other without changing the

meaning of the program. Hence, = means exactly what it means in high school algebra.
In addition, every law
P =qQ
has the property that @ is “closer” to an answer (assuming one exists) than P.
E, Ey, E,, ... are expressions. V, Vi, V5, ... are values. n, ni, ng, ... are names

(variables, placeholders). N is a non-negative integer.

2 Evaluating Expressions

Some syntactically well-formed expressions—such as (+ ’a 2), (first empty), (1 2), etc. —
do not have a value according to these rules. We say that evaluation of such expressions
“sticks”.

2.1 Values are values, are values, ...

Values are the answers produced by computations. Every value is also an expression, but
no evaluation is required (or possible!).
Some examples:

Value Kind of Value

0 number (exact)

1/3 number (exact)

0.3333333333333333 number (inexact)

6.023e23 number (inexact)

true boolean

false boolean

"piston symbol

"Scheme" string

empty list

(cons ’a empty) list

(list 6 120) list

+ built-in function (primitive operation)
(lambda (z) (+ z y)) | user-defined function (lambda expression)

Note: The evaluation rules assume that the abbreviated syntax for Scheme function defini-
tions has been be expanded so that the right hand sides of fucnction defintions are lambda
expressions.

2.2 Conditionals

2.2.1 The Laws of if

If the test of an if expression is not a value, evaluate it to one by repeatedly applying the
following rule

(f By, B, By) = (ifE! By, B3) if By, = E!

If the test of an if expression is a value, the next step depends on whether the value is
true. (Stylistically, you should use a boolean expression for the test, but Scheme permits
any value and treats anything but false as true.)

(iffalse E2 Eg) = E3
GfV By E3) = E, if V # false

2.2.2 The Laws of cond

If the test of the first clause is not a value or else, evaluate it to a value.
(COIld [E1 EQ]) = (cond [Ei EQ]) if E1 = E{

If the first condition (test expression) is a value or else, then one of the following rules
applies:

(cond [false E] ...) = (cond ...)
(cond [V E]...) = E if V # false
(cond [else E] ...) = FE
If there are no clauses —as in “(cond)” —the value is undefined. Generally, evaluation

of a cond expression should result in selection of one of the clauses (and evaluation of its
consequent expression.)
Here are some examples:

(cond [(> 10 12) (+ 7 8)] [else (x 6 4)]) = (cond [false (+ 7 8)] [else (x 6 4)])
= (cond [else (x 6 4)])
= (x64)

(cond [true (+ 7 8)] [else (x 6 4)]) = (+78)

(cond [foo (+ 7 8)] [else (x 6 4)]) = (+ 7 8)

2.3 The Laws of Application

Evaluate each of the subexpressions of an application in turn from left to right.
WV ... Vi E...) =MW ... Vieg BN L) if E = F
Given an application consisting of values
W Va ... V)

we apply different laws depending on whether the head value V; is a primitive procedure
or a user-defined procedure (a lambda expression). If the head value is not a procedure,
then evaluation sticks; there are no rules for reducing applications of non-procedures. Some
sticking expressions are (1 2), (1), and ((cons ’a empty) empty).

2.3.1 Primitive applications

There is a large table of laws for directly reducing to a value the application of a primitive
to a set of values. You know most of these rules from grammar school; the remainder are
decribed (implicitly) in the course lecture notes and Kent Dybvig’s book.

For instance, if (and only if) U is a value, V is a list value, and W is a non-list value,
then:

(first (cons U V)) = U
(rest (cons U V)) = V
(cons? (cons U V)) = true
(cons? W) = false

Examples:

(first (cons 1 empty)) = 1
(rest (cons 1 empty)) = empty
(cons? 1) = false

(cons? (cons 1 empty)) = true
(

+12) = 3

If a primitive operation is applied to illegal inputs, then evaluation sticks and does not
produce an answer. Some sticking expressions are (first empty), (rest 1), and (+ empty 2).

2.3.2 lambda applications

If the head value in an application is a lambda expression
(lambda (name; ... namey) E)

where namey, ..., namey are names and F is an expression, then the following rule specifies
the next step in evaluating the application:.

((lambda (namel s nameN) E) Vi... VN) = E[V1 for name . . .[Vy for name |

where the notation E{vype tor name] means E with all free occurrences of name safely replaced
by Value. (Locally bound variables in F must be renamed if they clash with free variables
inVy,...,Vn.)

Examples:

((lambda (z) (+ z z))7) = (+77
((lambda (f) (lambda (z) (f (f z))
(lambda (z) ((lambda (y) (
((lambda (f) (lambda (z) (f (f z)))
= (lambda (z) ((lambda (y) (

(lambda (y) (+ z y
7 y)) ((lambda (y)
(lambda (y) (+ z y
7 y)) ((lambda (y)

)
J; z y)) ©)))

)
+ 2 y)) 2)))

+ =

)
(
)
(

+ =

3 Evaluating definitions

The preceding section gives laws for evaluating Scheme expressions in the absence of pro-
gram definitions. But Scheme programs have the form

(deﬁne ny El)
(deﬁne no EQ)

(deﬁne ny EN)

E
where ni, ng, ..., ny are names and Ei, Fs, ..., Ey, E are expressions using Scheme
primitives and the defined names n1, no, ..., ny. The expression F is called the body of

the program and each expression F, is called the body of the definition (define ny Ej).
If the definition bodies E), are all values

(define n1 Vl)
(define ny V5)

(define ny Vy)

E
then we evaluate the expression E as described above with the added provision that the
names ni, no, ..., ny have values Vi, Vs, ..., Vv, respectively. More precisely, the program
evaluation law says
(define ny V1) (define ny V1)
(define ng V3) (define ny V3)
= ... if E =FE', assuming ni, no, ..., ny have
(define ny Vi) (define ny Vy) values V1, Va, ..., Vi, respectively
E E'
If the definition bodies Ff1,..., Ey that are not all values, use this rule:
(define ny V1) (define ny V1)
(define ny,_1 V1) (define ng_1 V1) (define n, V1) (define n, V1)
defi E = (defi E it o =
(define ny, Ey) (define ny E}) if (define ng 1 Vi 1) (define ny_1 Vi_1)
... - ,
(define ny Ey) (define ny Ex) Ei Ej
E E

These laws force us to evaluate the bodies of all definitions in sequential order before
evaluating the body of the program.

3.1 Rules for local

To evaluate programs containing local, we need to introduce the concept of promotion (also
called flattening). Given an expression of the form

(local [(define ny E1) ... (define ny En)] E)

we first convert the local definitions of the names ni,...,ny to global definitions of new
names nj,...,n%y, renaming all bound occurrences of ni,...,ny. Then we evaluate the
transformed expression F in the context of the new definitions. This conversion process is
called the promotion or flattening of a local expression. The new names nf, ..., n’y must be
chosen so that they are distinct from all other names in the program.

Let

(deﬁne n1 Vl)

(deﬁne MNp—1 VN)
E

be a program where the program body E has the form
ClL]

where L is an expression

(local [(define n, E;) ... (define ny En)] E)

enclosed in the surrounding program text C[] to form the expression E. Assume that
no subexpressions in F to the left of the subexpression L can be reduced. Hence, L is the
leftmost expression in the entire program that can be reduced. In this case, the surrounding
text C[] is called the evaluation context of L.

Using the notation introduced above, we can describe the promotion step reducing the
program by the following rule:

(define n; V1)

(define n;_; Vy)
C[Uocal [(define ny; Ey) ... (define ny En)] E)]

(define n1 V1)

(define NEp—1 VN)
(define 7} Eif tormy] ... [y or ny])

(define n'y ENm), tor ny] ... [y forny])

C[E[nll for TL1] [n’N for ’IlN]]

In other words, we replaced L by the body of L with nq,...,ny renamed and we added
appropriate definitions for the new names in the sequence of define statements preceding
the program body. Note that free occurences of the names n1,...,ny must be renamed in
the expressions F1,...,Ey, as well as F.

