Comp 411
Principles of Programming Languages
Lecture 11
The Semantics of Recursion II

Corky Cartwright
February 4, 2019
Recursive Definitions

Given a Scott-domain \(D \), we can write equations of the form:

\[
f = E_f \quad \text{[Note: } f(x_1, \ldots, x_n) = M_f \Leftrightarrow f = \lambda x_1, \ldots, x_n . M_f \text{]}\]

where \(E_f \) is an expression constructed from constants in \(D \), operations (continuous functions) on \(D \), and variables.

Example: let \(D \) be the domain of Jam values. Then

\[
\text{fact} = \text{map } n \text{ to if } n = 0 \text{ then } 1 \text{ else } n \ast \text{fact}(n - 1)
\]

is such an equation.

Equations of this form are called recursive definitions.
Solutions to Recursion Equations

• Given a recursion equation:
 \[f = E_f \]
 what is a solution? All of the constants and operations in \(E_f \) are known except \(f \) and all variables other than \(f \) are explicit parameters that have values (or potential values in the case of call-by-name provided as inputs. All functions in \(E_f \) are continuous.

• A solution to this equation is any continuous function \(f \) such that \(f = E_f \).

• But there may be more than one solution. We want to select the “best” solution \(f^* \). Note that \(f^* \) is an element of whatever domain \(D^* \) corresponds to the type of \(E_f \). In the most common case, it is \(D \rightarrow D \), but it can be \(D, D \rightarrow D, \ldots, D^k \rightarrow D, \ldots \). The best solution \(f^* \) (which always exists and is unique and computable for any domain in \(D^* \)) is the least solution under the approximation ordering in \(D^* \).
Constructing the Least Solution

How do we know that any solution exists to the equation \(f = \mathcal{E}_f \)? We will construct the least solution and prove it is a solution!

Since the domain \(D^* \) for \(f \) is a Scott-Domain, this domain has a least element \(\perp_{D^*} \) that approximates every solution to the equation.

Now form the function \(F: D^* \to D^* \) defined by \(F(f) = \mathcal{E}_f \), or equivalently, \(F = \lambda f. \mathcal{E}_f \) where \(\lambda f. \mathcal{E}_f \) is monotonic and continuous (by a lemma we skipped). Note that for the recursive definition of a function, \(F \) is a functional.

Consider the sequence \(S: \perp_{D^*}, F(\perp_{D^*}), F(F(\perp_{D^*})), \ldots, F^k(\perp_{D^*}), \ldots \)

Claim: \(S \) is an ascending chain (chain for short) in \(D^* \to D^* \).

Proof. \(\perp_D \leq F(\perp_{D^*}) \) by the definition of \(\perp_D \). If \(M \leq N \) then \(F(M) \leq F(N) \) by monotonicity. Hence, \(F^k(\perp_D) \leq F(F^k(\perp_D)) \) by induction on \(k \). Q.E.D.

Claim: \(S \) has a least upper bound \(f^* \).

Proof. Trivial. \(S \) is a chain in \(D^* \) and hence must have a least upper bound because \(D^* \) is a Scott-Domain. If \(D^* \) is a function domain, then \(f^* \) is continuous by definition.
Proving f^* is a fixed point of F

Must show: $F(f^*) = f^*$ where $F = \lambda f. E_f$

Claim: By definition $f^* = \text{⊔} F^k(\bot_{D^*})$. Since F is continuous $F(f^*) = F(\text{⊔} F^k(\bot_{D^*})) = \text{⊔} F^{k+1}(\bot_{D^*}) = \text{⊔} F^k(\bot_{D^*}) = f^*$.

Note: The second step above relies on the continuity of F and the third depends on the fact that $F^0(\bot_{D^*}) = \bot_{D^*} \leq F(\bot_{D^*})$.

Q.E.D.
Example

Look at factorial in detail by running the DrRacket stepper or conceptualizing strict continuous functions mapping \mathbb{D} into \mathbb{D} which can be represented as graphs (sets of pairs) over $\mathbb{D} - \{\bot_{\mathbb{D}}\}$. Recall that \mathbb{D} is the domain of Jam values.
How Can We Compute f^* Given F?

- Need to construct $F^\infty(\bot)$ from F. Can we write code for a function Y such that $Y(F) = f^* = F^\infty(\bot)$.

- Idea: use syntactic trick well known in the λ-calculus to build a potentially infinite stack of Fs.

- Preliminary attempt:
 $$(\lambda x. F(x \\ x))(\lambda x. F(x \\ x))$$

- Reduces to (in one step) to:
 $F((\lambda x. F(x \\ x))(\lambda x. F(x \\ x)))$

- Reduces to (in k steps) to:
 $F^k((\lambda x. F(x \\ x))(\lambda x. F(x \\ x)))$
What Is the Code for \(Y \)?

In Haskell (or other language with call-by-name)
\[
Y = \lambda F. (\lambda x. F(x \, x))(\lambda x. F(x \, x))
\]

Hence,
\[
Y(\text{FACT})
= (\lambda x. \text{FACT}(x \, x))(\lambda x. \text{FACT}(x \, x))
= \text{FACT}((\lambda x. \text{FACT}(x \, x))(\lambda x. \text{FACT}(x \, x)))
= \lambda n. \text{if } n=0 \text{ then } 1 \text{ else } n*((\lambda x. \text{FACT}(x \, x))(\lambda x. \text{FACT}(x \, x)))(n-1)
\]
implying \(Y(\text{FACT}) \) reduces to a value!

Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No! Why not? What about divergence? \(Y(\text{FACT}) \)
\[
= (\lambda x. \text{FACT}(x \, x))(\lambda x. \text{FACT}(x \, x))
= \text{FACT}((\lambda x. \text{FACT}(x \, x))(\lambda x. \text{FACT}(x \, x)))
= \text{FACT}(\text{FACT}(\ldots)) \text{ (diverging like } \Omega)\]
Why Does Call-by-name Work?

By assumption G must have the form $\lambda f. \lambda n. M$

$$
(\lambda F. ((\lambda x.F(x x)) (\lambda x.F(x x))))
G
= G ((\lambda x.G(x x)) (\lambda x.G(x x)))
= \lambda f. \lambda n.M) \lambda x. G(x x)) \lambda x.G(x x))
= \lambda n.M[f := (\lambda x. G(x x)) (\lambda x.G(x x))]
$$

If the evaluation M of f does not require evaluating an occurrence of f, then x is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f = \lambda n.M$.

Exercise: how can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam? Hint: if M is a divergent term denoting a unary function $\lambda x.Mx$ is an “equivalent” term (called the (eta) conversion of M) that is not divergent! As a concrete example, assume that M is the term $M\Omega x$.