Comp 411
Principles of Programming Languages
Lecture 11
The Semantics of Recursion II

Corky Cartwright
February 12, 2021
Recursive Definitions

Given a Scott-domain D, we can write equations of the form:

$$f = E_f \quad \text{[Note: } f(x_1, \ldots, x_n) = M_f \iff f = \lambda x_1, \ldots, x_n . M_f]$$

where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and variables.

Example: let D be the domain of Jam values. Then

$$\text{fact} = \text{map } n \text{ to if } n = 0 \text{ then } 1 \text{ else } n \times \text{fact}(n - 1)$$

is such an equation.

Equations of this form are called recursive definitions.
Solutions to Recursion Equations

• Given a recursion equation:
 \[f = E_f \]
 what is a solution? All of the constants and operations in \(E_f \) are known except \(f \) and all variables other than \(f \) are explicit parameters that have values (or potential values in the case of call-by-name provided as inputs). All functions in \(E_f \) are continuous.

• A solution to this equation is any continuous function \(f \) such that \(f = E_f \), or alternatively is a fixed point of the function(al) \(\lambda f. E_f \).

• But there may be more than one solution. We want to select the best solution \(f^* \). Note that \(f^* \) is an element of whatever domain \(D^* \) corresponds to the type of \(E_f \). In the most common case, it is \(D \rightarrow D \), but it can be \(D, D \rightarrow D, \ldots, D^k \rightarrow D, \ldots \). The best solution \(f^* \) (which always exists and is unique and computable for any domain in \(D^* \)) is the least solution under the approximation ordering in \(D^* \).
Constructing the Least Solution

How do we know that any solution exists to the equation $f = E_f$? We will construct the least solution and prove it is a solution!

Since the domain D^* for f is a Scott-Domain, this domain has a least element \bot_{D^*} that approximates every solution to the equation.

Now form the function $F : D^* \rightarrow D^*$ defined by $F(f) = E_f$, or equivalently, $F = \lambda f. E_f$ where $\lambda f. E_f$ is monotonic and continuous (by a lemma we skipped). Note that for a recursive definition of a function, F is a functional.

Consider the sequence S: \bot_{D^*}, $F(\bot_{D^*})$, $F(F(\bot_{D^*}))$, \ldots, $F^k(\bot_{D^*})$, \ldots

Claim: S is an ascending chain (chain for short) in $D^* \rightarrow D^*$.

Proof. $\bot_D \leq F(\bot_{D^*})$ by the definition of \bot_D. If $M \leq N$ then $F(M) \leq F(N)$ by monotonicity. Hence, $F^k(\bot_D) \leq F(F^k(\bot_D))$ by induction on k. Q.E.D.

Claim: S has a least upper bound f^*.

Proof. Trivial. S is a chain in D^* and hence must have a least upper bound because D^* is a Scott-Domain. If D^* is a function domain, then f^* is continuous by definition.
Proving f^* is a fixed point of F

Must show: $F(f^*) = f^*$ where $F = \lambda f. E_f$

Claim: By definition $f^* = \bigcup F^k(\bot_{D^*})$ Since F is continuous $F(f^*) = F(\bigcup F^k(\bot_{D^*})) = \bigcup F^{k+1}(\bot_{D^*}) = \bigcup F^k(\bot_{D^*}) = f^*$.

Note: The second step above relies on the continuity of F and the third depends on the fact that $F^0(\bot_{D^*}) = \bot_{D^*} \leq F(\bot_{D^*})$.

Q.E.D.
Example

Look at factorial in detail by running the DrRacket stepper or conceptualizing strict continuous functions mapping \(\mathbb{N} \) into \(\mathbb{N} \) where is the domain natural numbers including \(\bot \), which can be represented as graphs (sets of pairs) over \(\mathbb{N}\setminus\{\bot\} \). The same observation applies to the domain of Jam values which includes \(\mathbb{N} \) as a subdomain.
How Can We Compute f^* Given F?

• Need to construct $F^\infty(\bot)$ from F. Can we write code for a function Y such that $Y(F) = f^* = F^\infty(\bot)$.

• Idea: use syntactic trick well known in the λ-calculus to build a potentially infinite stack of Fs, based on an understanding of how evaluation of $\Omega = (\lambda x. (x \ x)) (\lambda x. (x \ x))$ works.

• Preliminary attempt: $Y(F) = (\lambda x. F(x \ x)) (\lambda x. F(x \ x))$

• Reduces to (in one step) to: $F((\lambda x. F(x \ x)) (\lambda x. F(x \ x)))$

• Reduces to (in k steps) to: $F^k((\lambda x. F(x \ x)) (\lambda x. F(x \ x)))$
How does the Code for \mathbf{Y} Work?

In Haskell (or other language with call-by-name)

$$Y = \lambda F. \ (\lambda x. \ F(x \ x)) \ (\lambda x. \ F(x \ x))$$

Hence,

$$Y(\text{FACT})$$

$$= (\lambda x. \ \text{FACT}(x \ x))(\lambda x. \ \text{FACT}(x \ x))$$

$$= \text{FACT}((\lambda x. \ \text{FACT}(x \ x))(\lambda x. \ \text{FACT}(x \ x)))$$

$$= \lambda n. \ \text{if} \ n=0 \ \text{then} \ 1 \ \text{; only valid in Call-By-Name!}$$

$$\ \text{else} \ n*((\lambda x. \ \text{FACT}(x \ x))(\lambda x. \ \text{FACT}(x \ x)))(n-1)$$

implying $Y(\text{FACT})$ reduces to a value!

Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No! Why not? What about divergence? $Y(\text{FACT})$

$$= (\lambda x. \ \text{FACT}(x \ x))(\lambda x. \ \text{FACT}(x \ x))$$

$$= \text{FACT}((\lambda x. \ \text{FACT}(x \ x))(\lambda x. \ \text{FACT}(x \ x)))$$

$$= \text{FACT}(\text{FACT}(\ldots))$$ diverging like Ω) but growing with each reduction
Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive function definition must have the form $\lambda f. \lambda n. M$. Hence,

$$(\lambda F.((\lambda x.F(x \ x)) (\lambda x.F(x \ x)))) \ G$$

$$= G ((\lambda x.G(x \ x)) (\lambda x.G(x \ x)))$$

$$= (\lambda f.\lambda n.M) ((\lambda x. G(x \ x)) (\lambda x.G(x \ x)))$$

$$= \lambda n.M[f \leftarrow (\lambda x. G(x \ x)) (\lambda x.G(x \ x))]$$

which is a value. If the evaluation of M does not require evaluating an occurrence of f, then $(\lambda x. G(x \ x)) (\lambda x.G(x \ x))$ is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f = \lambda n.M$.

Exercise: How can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam?
Why Does Call-by-name \mathcal{Y} Work?

By assumption the functional G corresponding to a recursive function definition must have the form $\lambda f. \lambda n. M$. Hence,

$$(\lambda F.((\lambda x. F(x \ x)) \ (\lambda x. F(x \ x)))) G$$

$= G ((\lambda x. G(x \ x)) \ (\lambda x. G(x \ x)))$

$= (\lambda f. \lambda n. M) ((\lambda x. G(x \ x)) \ (\lambda x. G(x \ x)))$

$= \lambda n. M_{[f \leftarrow (\lambda x. G(x \ x)) \ (\lambda x. G(x \ x))]}$

which is a value. If the evaluation of M does not require evaluating an occurrence of f, then $(\lambda x. G(x \ x)) \ (\lambda x. G(x \ x))$ is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f = \lambda n. M$. But each unwinding requires a few reduction steps, so this definition is a poor way to implement recursion!

Exercise: how can we workaround this problem to create a version of the \mathcal{Y} operator that works for call-by-value Scheme and Jam? See the next lecture.