Recursive Definitions

Given a Scott-domain D, we can write equations of the form:

$$f = E_f \quad \text{[Note: } f(x_1, \ldots, x_n) = M_f \iff f = \lambda x_1, \ldots, x_n . M_f\text{]}$$

where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and variables.

Example: let D be the domain of Jam values. Then

```plaintext
fact = map n to if n = 0 then 1 else n * fact(n - 1)
```

is such an equation.

Equations of this form are called recursive definitions.
Solutions to Recursion Equations

• Given a recursion equation:
 \[f = E_f \]
what is a solution? All of the constants and operations in \(E_f \) are known except \(f \) and all variables other than \(f \) are explicit parameters that have values (or potential values in the case of call-by-name provided as inputs. All functions in \(E_f \) are continuous.
• A solution to this equation is any continuous function \(f \) such that \(f = E_f \).
• But there may be more than one solution. We want to select the “best” solution \(f^* \). Note that \(f^* \) is an element of whatever domain \(D^* \) corresponds to the type of \(E_f \). In the most common case, it is \(D \rightarrow D \), but it can be \(D, D \rightarrow D, \ldots, D^k \rightarrow D, \ldots \). The best solution \(f^* \) (which always exists and is unique and computable for a any domain in \(D^* \)) is the least solution under the approximation ordering in \(D^* \).
Constructing the Least Solution

How do we know that any solution exists to the equation $f = E_f$? We will construct the least solution and prove it is a solution!

Since the domain D^* for f is a Scott-Domain, this domain has a least element \bot_{D^*} that approximates every solution to the equation.

Now form the function $F: D^* \rightarrow D^*$ defined by $F(f) = E_f$, or equivalently, $F = \lambda f. E_f$ where $\lambda f. E_f$ is monotonic and continuous (by a lemma we skipped). Note that for the recursive definition of a function, F is a functional.

Consider the sequence S: \bot_{D^*}, $F(\bot_{D^*})$, $F(F(\bot_{D^*}))$, $F^k(\bot_{D^*})$, ... Claim S is an ascending chain (chain for short) in $D^* \rightarrow D^*$.

Proof. $\bot_D \leq F(\bot_{D^*})$ by the definition of \bot_D. If $M \leq N$ then $F(M) \leq F(N)$ by monotonicity. Hence, $F^k(\bot_D) \leq F(F^k(\bot_D))$ by induction on k. Q.E.D.

Claim: S has a least upper bound f^*.

Proof. Trivial. S is a chain in D^* and hence must have a least upper bound because D^* is a Scott-Domain. If D^* is a function domain, then f^* is continuous by definition.
Proving f^* is a fixed point of F

Must show: $F(f^*) = f^*$ where $F = \lambda f. E_f$

Claim: By definition $f^* = \sqcup F^k(\bot_{D^*})$ Since F is continuous $F(f^*) = F(\sqcup F^k(\bot_{D^*})) = \sqcup F^{k+1}(\bot_{D^*}) = \sqcup F^k(\bot_{D^*}) = f^*$.

Note: The second step above relies on the continuity of F and the third depends on the fact that $F^{0}(\bot_{D^*}) = \bot_{D^*} \leq F(\bot_{D^*})$.

Q.E.D.
Example

Look at factorial in detail by running the DrRacket stepper or conceptualizing strict continuous functions mapping D into D which can be represented as graphs (sets of pairs) over $D - \{\perp_D\}$. Recall that D is the domain of Jam values.
How Can We Compute f^* Given F?

- Need to construct $F^\infty(\bot)$ from F. Can we write code for a function Y such that $Y(F) = f^* = F^\infty(\bot)$.
- Idea: use syntactic trick well known in the λ-calculus to build a potentially infinite stack of Fs.
- Preliminary attempt:
 $$(\lambda x. F(x \, x)) \, (\lambda x. F(x \, x))$$
- Reduces to (in one step) to:
 $F((\lambda x. F(x \, x)) \, (\lambda x. F(x \, x)))$
- Reduces to (in k steps) to:
 $F^k((\lambda x. F(x \, x)) \, (\lambda x. F(x \, x)))$
What Is the Code for Y?

In Haskell (or other language with call-by-name)
\[Y = \lambda F. (\lambda x. F(x \ x))(\lambda x. F(x \ x)) \]

Hence,
\[Y(\text{FACT}) \]
\[= (\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x)) \]
\[= \text{FACT}((\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x))) \]
\[= \lambda n. \text{if } n=0 \text{ then 1 else } n^*((\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x))) \]

implying \(Y(\text{FACT}) \) reduces to a value!

Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No! Why not? What about divergence? \(Y(\text{FACT}) \)
\[= (\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x)) \]
\[= \text{FACT}((\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x))) \]
\[= \text{FACT}((\text{FACT}(\ldots)) \text{ (diverging like } \Omega) \]

Why Does Call-by-name Work?

By assumption \(G \) corresponding to a recursive function definition must have the form \(\lambda f. \lambda n. M \). Hence,

\[
(\lambda F.((\lambda x.F(x \ x)) (\lambda x.F(x \ x)))) \ G
= G ((\lambda x.G(x \ x)) (\lambda x.G(x \ x)))
= (\lambda f.\lambda n.M) ((\lambda x. G(x \ x)) (\lambda x.G(x \ x)))
= \lambda n.M[f \leftarrow (\lambda x. G(x \ x)) (\lambda x.G(x \ x))]\]

which is a value. If the evaluation of \(M \) does not require evaluating an occurrence of \(f \), then \((\lambda x. G(x \ x)) (\lambda x.G(x \ x)) \) is not evaluated. Otherwise, the binding of \(x \) is unwound only as many times as required to get to the base case in the definition \(f = \lambda n. M \).

Exercise: how can we workaround this problem to create a version of the \(\text{Y} \) operator that works for call-by-value Scheme and Jam? Hint: if \(M \) is a divergent term denoting a unary function \(\lambda x.Mx \) (where \(x \) is not free in \(M \)) is an “equivalent” term called the *eta* \([\eta]\) conversion of \(M \) that is not divergent! As a concrete example, assume that \(M \) is the term \(\Omega \).