
Comp 411

Principles of Programming Languages

Lecture 8

Meta-interpreters II

Corky Cartwright

February 8, 2021

Representation Tricks

• We described closures (the meaning of

lambda-expressions) as <code, env> pairs.
 Are other representations possible/defensible? Yes,

particularly in a functional language.

 Closures can be represented as (Scheme) functions.

Idea: wrap (lambda (v) …) around code applying the

pair closure in our meta-interpreter to v.

• What about environment representations?
 A functional representation mapping symbols to values

is elegant if not good software engineering.

Revised Meta-interpreter
;; V = Const | V → V
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = (listOf Binding)
;; Closure = V → V
;; eval: R Env → V
(define eval … <unchanged> …)

;; apply: Closure V → V
(define apply (lambda (cl v) (cl v)))

;; make-closure: Proc Env → Closure
(define (make-closure M env)

(lambda (v)
(eval (proc-body M)
(cons (make-binding (proc-param M) v) env))))

This code does not encapsulate the representation of closures. We

explicitly use a closure as a function and we use make-closure as

a function name (which is legal but a bad idea in real code). How

would the code change if we encapsulated it? Think OO.

.

Closures as Functions
• Mathematically elegant

• Questionable from software engineering perspective. Why?

Functions are opaque. Their internal form cannot be

examined. (Why?) Closures as structures, in contrast, are

open to inspection.

• Not literally possible in languages like Java 5+ that support

inner classes rather than closures. But there is a Java 5+

equivalent: return a class implementing an interface

Lambda<V,V>, the strategy/command design pattern. The Java

formulation has essentially the same advantages and

disadvantages as the Scheme formulation. Note: Comp 310

relies on libraries with interfaces Ilambda<In,Out>. In Java 8+,

closures can be used in source code but they are implemented as

anonymous inner classes! .

Meta-interpreter with Environments as Functions

;; V = Const | V → V
;; Binding = (make-Binding Sym V) ; Note: Sym not Var
;; Env = Sym → V
;; Closure = V → V

;; eval: R Env → V
(define eval … <unchanged> …)

;; apply: Closure V → V
(define apply (lambda (cl v) (cl v)))

;; make-closure: Proc Env → Closure
(define (make-closure M env) ;; name make-closure is sneaky
(lambda (v)
(eval (proc-body M) (extend (proc-param M) v env))))

(define lookup (lambda (s env) (env s)))
(define extend (lambda (s1 v env)
(lambda (s2) (if (equal? s1 s2) v (env s2))))

Environments as Functions

• Mathematically elegant

• Questionable from software engineering perspective. Why?

• Functions are generally not finite and cannot be treated as tables.

• Environments, in contrast, are finite functions. One consequence

of the fact that functions are infinite objects: functions are opaque

in output while concrete closures (data structures representing

finite tables) are not.

• Not literally possible in languages like Java 8-13 that support

inner classes rather than closures. But there is a Java equivalent:

a singleton class implementing an interface Lambda<Sym,V> the

strategy (or command) design pattern. Java formulation has

essentially the same advantages and disadvantages as the Scheme

formulation.

Exercise: revise our previous correct meta-interpreters to use

extend instead of cons. Explicitly define lookup and extend.

.

Important Variations on Our Meta-interpreter

• Call-by-name (CBN) beta-reduction. Recall that in our

syntactic intepreter for LC that we chose to restrict beta-

reduction to values. In practice, this restriction is very

important in languages with mutable data. But LC does not

(yet) support mutation. CBN beta-reduction is unrestricted.

• Call-by-need evaluation of arguments. There is no syntactic

equivalent since this evaluation policy is a meta-interpreter

based optimization of Call-by-name. In the presence of

mutation (or equality comparison on functions

[comparing addresses]), call-by-need is not equivalent to

call-by-name.

Call-by-name Discussion

• In Call-by-name syntactic interpretation, no argument

is evaluated until its value is demanded by a primitive

operation (only + in LC). If a parameter is never

evaluated in the body of function, the corresponding

argument is never evaluated.

• Disadvantage: if a parameter is evaluated multiple

times, so is the corresponding argument!

• Thought exercise: how can we defer the evaluation of

an argument expression (Hint: think about closures)?

