Comp 411
Principles of Programming Languages
Lecture 11
The Semantics of Recursion II

Corky Cartwright
February 7, 2020
Recursive Definitions

Given a Scott-domain D, we can write equations of the form:

$$f = E_f \quad [\text{Note: } f(x_1, \ldots, x_n) = M_f \iff f = \lambda x_1, \ldots, x_n . M_f]$$

where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and variables.

Example: let D be the domain of Jam values. Then

$$\text{fact} = \text{map } n \text{ to if } n = 0 \text{ then } 1 \text{ else } n \ast \text{fact}(n - 1)$$

is such an equation.

Equations of this form are called recursive definitions.
Solutions to Recursion Equations

- Given a recursion equation:
 \[f = E_f \]
 what is a solution? All of the constants and operations in \(E_f \) are known except \(f \) and all variables other than \(f \) are explicit parameters that have values (or potential values in the case of call-by-name provided as inputs. All functions in \(E_f \) are continuous.
- A solution to this equation is any continuous function \(f \) such that \(f = E_f \).
- But there may be more than one solution. We want to select the "best" solution \(f^* \). Note that \(f^* \) is an element of whatever domain \(D^* \) corresponds to the type of \(E_f \). In the most common case, it is \(D \rightarrow D \), but it can be \(D, D \rightarrow D, \ldots, D^k \rightarrow D, \ldots \). The best solution \(f^* \) (which always exists and is unique and computable for a any domain in \(D^* \)) is the least solution under the approximation ordering in \(D^* \).
Constructing the Least Solution

How do we know that any solution exists to the equation \(f = E_f \)? We will construct the least solution and prove it is a solution!

Since the domain \(D^* \) for \(f \) is a Scott-Domain, this domain has a least element \(\bot_{D^*} \) that approximates every solution to the equation.

Now form the function \(F : D^* \to D^* \) defined by \(F(f) = E_f \), or equivalently, \(F = \lambda f. E_f \) where \(\lambda f. E_f \) is monotonic and continuous (by a lemma we skipped). Note that for the recursive definition of a function, \(F \) is a functional.

Consider the sequence \(S : \bot_{D^*}, F(\bot_{D^*}), F(F(\bot_{D^*})), \ldots, F^k(\bot_{D^*}), \ldots \)

Claim \(S \) is an ascending chain (chain for short) in \(D^* \to D^* \).

Proof. \(\bot_D \leq F(\bot_{D^*}) \) by the definition of \(\bot_D \). If \(M \leq N \) then \(F(M) \leq F(N) \) by monotonicity. Hence, \(F^k(\bot_D) \leq F(F^k(\bot_D)) \) by induction on \(k \). Q.E.D.

Claim: \(S \) has a least upper bound \(f^* \).

Proof. Trivial. \(S \) is a chain in \(D^* \) and hence must have a least upper bound because \(D^* \) is a Scott-Domain. If \(D^* \) is a function domain, then \(f^* \) is continuous by definition.
Proving \(f^* \) is a fixed point of \(F \)

Must show: \(F(f^*) = f^* \) where \(F = \lambda f. E_f \).

Claim: By definition \(f^* = \sqcup \ F^k(⊥_{D^*}) \) Since \(F \) is continuous
\(F(f^*) = F(\sqcup F^k(⊥_{D^*})) = \sqcup F^{k+1}(⊥_{D^*}) = \sqcup F^k(⊥_{D^*}) = f^* \).

Note: The second step above relies on the continuity of \(F \) and the third depends on the fact that \(F^0(⊥_{D^*}) = ⊥_{D^*} \leq F(⊥_{D^*}) \).

Q.E.D.
Example

Look at factorial in detail by running the DrRacket stepper or conceptualizing strict continuous functions mapping D into D which can be represented as graphs (sets of pairs) over $D - \{ \perp_D \}$. Recall that D is the domain of Jam values.
How Can We Compute f^* Given F?

• Need to construct $F^\infty(\bot)$ from F. Can we write code for a function Y such that $Y(F) = f^* = F^\infty(\bot)$.

• Idea: use syntactic trick well known in the λ-calculus to build a potentially infinite stack of Fs.

• Preliminary attempt: $Y(F) = (\lambda x. F(x x)) (\lambda x. F(x x))$

• Reduces to (in one step) to: $F((\lambda x. F(x x))(\lambda x. F(x x)))$

• Reduces to (in k steps) to: $F^k((\lambda x. F(x x)) (\lambda x. F(x x)))$
What Is the Code for Y?

In Haskell (or other language with call-by-name)

$$Y = \lambda F. (\lambda x. F(x \ x))(\lambda x. F(x \ x))$$

Hence,

$$Y(\text{FACT})$$

= $$(\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x))$$

= $\text{FACT}((\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x)))$$

= $\lambda n. \text{if } n=0 \text{ then 1 ; only works in CBN!}$

else $n*(((\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x)))(n-1)$

implying $Y(\text{FACT})$ reduces to a value (a !)

Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No! Why not? What about divergence?

$$Y(\text{FACT})$$

= $$(\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x))$$

= $\text{FACT}((\lambda x. \text{FACT}(x \ x))(\lambda x. \text{FACT}(x \ x)))$

= $\text{FACT}(\text{FACT}(\ldots))$ diverging like Ω) but growing with each reduction
Why Does Call-by-name Work?

By assumption G corresponding to a recursive function definition must have the form $\lambda f. \lambda n. M$. Hence,

$$(\lambda F.((\lambda x.F(x \ x)) (\lambda x.F(x \ x)))) \ G$$

$$= G ((\lambda x.G(x \ x)) (\lambda x.G(x \ x)))$$

$$= (\lambda f.\lambda n.M) ((\lambda x. G(x \ x)) (\lambda x.G(x \ x)))$$

$$= \lambda n. M[f \leftarrow (\lambda x. G(x \ x)) (\lambda x.G(x \ x))]$$

which is a value. If the evaluation of M does not require evaluating an occurrence of f, then $(\lambda x. G(x \ x)) (\lambda x.G(x \ x))$ is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f = \lambda n. M$.

Exercise: how can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam? Hint: if M is a divergent term denoting a unary function $\lambda x. Mx$ (where x is not free in M) is an “equivalent” term called the eta [Greek letter η] conversion of M that is not divergent! As a concrete example, assume that M is the term Ω.