
Comp 311 - Review 2
Instructor:

Robert ”Corky” Cartwright
cork@cs.rice.edu

Review by Mathias Ricken
mgricken@cs.rice.edu

This review sheet provides a few examples and exercises. You do not need to hand them in and
will not get points for your work. You are encouraged to do the exercises and work through the
examples to make sure you understand the material. This material may be tested on the first exam.

1 Church Numerals

Assume we have a programming language that doesn’t support numbers or booleans: a lambda is
the only value it provides. It is an interesting question whether we can nonetheless create some
system that allows us to count, add, multiply, and do all the other things we do with numbers.

Church numerals use lambdas to create a representation of numbers. The idea is closely related to
the functional representation of natural numbers, i.e. to have a natural number representing “zero”
and a function “succ” that returns the successor of the natural number it was given. The choice of
“zero” and “succ” is arbitrary, all that matters is that there is a zero and that there is a function
that can provide the successor.

Church numerals are an extension of this. All Church numerals are functions with two parameters:

λf . λx . something

The first parameter, f , is the successor function that should be used. The second parameter, x, is
the value that represents zero. Therefore, the Church numeral for zero is:

C0 = λf . λx . x

Whenever it is applied, it returns the value representing zero. The Church numeral for one applies
the successor function to the value representing zero exactly once:

C1 = λf . λx . fx

The Church numerals that follow just have additional applications of the successor function:

C2 = λf . λx . f(fx)
C3 = λf . λx . f(f(fx))
C4 = λf . λx . f(f(f(fx)))
Cn = λf . λx . fnx

It is important to note that in this minimal lambda calculus, we can’t really do very much with these
Church numerals. We can count and add and multiply (more about that below), but to understand
the result, we have to count the applications of the successor function.

If we had a language that were a little more powerful, however, we could do the following:

S = λr .“ring the small bell (ding) and apply r”
Z = λr .“ring the big bell (dong)”

1



The application of C4 to S and Z would then produce “ding ding ding ding dong”, since C4 is
f(f(f(fx))).

If we add numbers to our language, then we can convert Church numerals to decimal numbers if we
define S and Z as follows:

S = λr . 1 + r()
Z = λr . 0

Now C4SZ is equivalent to 1+1+1+1+0, so it actually evaluates to 4. Without using “side effects”
like ringing bells or being able to turn Church numerals into decimal numbers, we have to count the
applications – there’s no way around that – and this violates the encapsulation of functions. We do
not treat lambdas as black boxes anymore, we look at their bodies and count...

1.1 Addition

We can easily perform addition using Church numerals if we realize that they do everything relative
to the value they consider zero. C1 is one more than C0, and C4 is one more than C3; therefore, C1

represents 1 relative to C0, and C4 represents 1 relative to C3.

If we want to add 3 to 4 using Church numerals, we simply create a new Church numeral and use
one of the summands as zero for the other:

C3+4 = λf . λx . C3 f (C4 f x)

C3+4 is a function with two parameters – just like any Church numeral – but it applies C3 to f , the
successor function, and C4fx, which now acts as value for zero. Written out, C3+4 is (parameters
have been renamed to avoid shadowing)

C3+4 = λf . λx . (λf3 . λx3 . f3(f3(f3x3))) f (λf4 . λx4 . f4(f4(f4(f4x4))) f x)
= λf . λx . f(f(f(λf4 . λx4 . f4(f4(f4(f4x4))) f x)))
= λf . λx . f(f(f(f(f(f(fx))))))
= C7

We can therefore define a function add that takes two Church numerals M and N and returns the
sum of them:

add = λM . λN . λf . λx . N f (M f x)
add C4 C7 = C7

add actually has four lambdas, not just two for M and N , since the result is a Church numeral,
which is a function with two parameters.

1.2 Multiplication

We can perform a similar trick for multiplication. C2 is two steps away from C0, but so is C4 if
your step size is twice as large. For addition, we changed the value that was considered 0. We can
achieve multiplication by changing the successor function.

If we want to multiply 2 and 3 using Church numerals, we want to take two steps of 3 starting from
zero.

C2∗3 = λf . λx . C2 (C3 f) x

2



C4 is a function with two parameters, but since they are individual lambdas, it can also be interpreted
as a function with one parameter, which returns a function with another parameter. The lambda
calculus has this feature built in since it only knows functions with one parameter; in other languages,
you may have to do this manually using a technique called “currying” (named after the logician
Haskell Curry). Our language JAM is such a language. The function add

let add := map x, y to x + y; in . . .

can be curried into

let addc := map x to map y to x + y; in . . .

This has the advantage that we can easily define a function add2 that always adds 2 to the number
passed to it:

let add2 := map x to addc(x) in . . .

We make use of this and apply f , the successor function, to C3. The result is a function with one
parameter that applies f three times to whatever was given to it:

C3 f
= (λf3 . λx . (f3(f3(f3x))))f
= λx . f(f(fx))

If we use this as successor function for C2, then it will make two steps of three, as desired:

C2∗3 = λf . λx . C2 (λx3 . f(f(fx3))) x
= λf . λx . (λf2 . λx2 . f2(f2x2)) (λx3 . f(f(fx3))) x
= λf . λx . (λx3 . f(f(fx3)))((λx3a . f(f(fx3a)))x)
= λf . λx . f(f(f((λx3a . f(f(fx3a)))x)))
= λf . λx . f(f(f(f(f(fx)))))
= C6

We can therefore define a function multiply that takes two Church numerals M and N and returns
the product of them:

multiply = λM . λN . λf . λx . N (Mf) x
multiply C2 C3 = C6

How would you define exponentiate, a function that takes two Church numerals M and N and
returns the Church numeral representing MN?

2 Church Booleans

We can ask the same question we asked about numbers about booleans: Can we represent them
using just functions? Yes, we can, and in a way very similar to Church numerals.

A Church boolean is a function with two parameters, the first represents what the function should
return if it is true, the second what the function should return if it is false:

tru = λx . λy . x
fls = λx . λy . y

3



Again, with just the minimal lambda calculus, we can’t really do a lot, and we always have to look
inside the Church boolean to figure out what it is. If we had a more powerful language, we could
do the following:

T = “ring the small bell (ding)”
F = “ring the big bell (dong)”

Now tru T F produces “ding” and fls T F produces “dong”, so we could easily distinguish them. It
is interesting to note that Church booleans have an if-then-else construct almost built-in: b T F ,
where b is a Church boolean, is almost the same as if (b) then T else F. We can generalize this
by defining a function test with three parameters b, c, and a, that applies the consequence c and
alternative a to the Church boolean b:

test = λb . λc . λa . b c a

2.1 Boolean Arithmetic

Just like with Church numerals, we can also perform arithmetic with Church booleans. It is easy to
define functions for and, or, and not:

and = λM . λN . M (Ntru fls) fls
or = λM . λN . M tru (N tru fls)
not = λM . M fls tru

3 SKI and SK Combinator Calculi

Even though the untyped lambda calculus already is very minimalistic, we can further reduce it to
just three (S, K, I) or even two (S, K) symbols, or combinators. All terms that can be expressed in
the lambda calculus can also be expressed using just the combinators S, K, I and parentheses, and
the I isn’t even necessary.

Since these new languages contain only applications and the combinators S, K and maybe I, certain
properties are easier to prove in these calculi than in the lambda calculus, which is comprised of
applications, lambdas, and variables. The SKI and SK combinator calculi are “identifier-free”; the
lambda calculus is not.

3.1 SKI Combinator Calculus

Let S, K, I be the following functions:

I x = x
K x y = x
S x y z = x z (y z)

To convert an expression e in the lambda calculus to an expression in the SKI combinator calculus,
we can define a function ϕ(e):

If e is of the form . . .

1. λx . x, then ϕ(e) = I.

2. λx . c, then ϕ(e) = (Kc).

4



3. λx . (α β), then ϕ(e) = (S(λx . ϕ(α))(λx . ϕ(β))).

Now we iteratively apply this function to the innermost lambda of an expression e until all lambdas
have disappeared. In the following example, the innermost lambda(s) has been underlined:

C2 = λf . λx . f(fx) (case 3)
→ λf . (S(λx . f)(λx . (fx))) (cases 2, 3)
→ λf . (S(Kf)(S(λx . f)(λx . x))) (cases 2, 1)
→ λf . (S(Kf)(S(Kf)I)) (case 3)
→ (S(λf . (S(Kf)))(λf . (S(Kf)I))) (case 3)
→ (S(S(λf . S)(λf . (Kf)))(λf . (S(Kf)I))) (cases 1, 3)
→ (S(S(KS)(S(λf . K)(λf . f)))(λf . (S(Kf)I))) (cases 2, 1)
→ (S(S(KS)(S(KK)I))(λf . (S(Kf)I))) (case 3)
→ (S(S(KS)(S(KK)I))(S(λf . (S(Kf)))(λf . I))) (cases 3, 2)
→ (S(S(KS)(S(KK)I))(S(S(λf . S)(λf . (Kf)))(KI))) (cases 2, 3)
→ (S(S(KS)(S(KK)I))(S(S(KS)(S(λf . K)(λf . f)))(KI))) (cases 2, 1)
→ (S(S(KS)(S(KK)I))(S(S(KS)(S(KK)I))(KI)))

Were we to expand this expression using the definitions for S, K, I given above and simplify the
term, we would end up with the expression for C2 again.

3.2 SK Combinator Calculus

The SKI combinator calculus is not minimal, it can still be reduced further. We can remove the I
combinator by noting that I = (SKK):

(SKKx) → (Kx(Kx)) → x

If we substitute (SKK) wherever we find I, we can express any term in the lambda calculus using
only the combinators S and K and parentheses for grouping.

5


