Comp 411 Principles of Programming Languages Lecture 11 The Semantics of Recursion II

Corky Cartwright February 12, 2021

Recursive Definitions

Given a Scott-domain D, we can write equations of the form:

```
f = E_f [Note: f(x_1,...,x_n) = M_f \Leftrightarrow f = \lambda x_1,...,x_n \cdot M_f]
```

where E_f is an expression constructed from constants in D, operations (continuous functions) on D, and variables.

Example: let D be the domain of Jam values. Then

```
fact = map n to if n = 0 then 1 else n * fact(n - 1) is such an equation.
```

Equations of this form are called recursive definitions.

Solutions to Recursion Equations

• Given a recursion equation:

$$f = E_f$$

what is a solution? All of the constants and operations in $\mathbf{E_f}$ are known except \mathbf{f} and all variables other than \mathbf{f} are explicit parameters that have values (or potential values in the case of call-by-name provided as inputs). All functions in $\mathbf{E_f}$ are continuous.

- A solution to this equation is any continuous function f such that
 f = E_f, or alternatively is a fixed point of the function(al) λf.E_f.
- But there may be more than one solution. We want to select the best solution f*. Note that f* is an element of whatever domain D* corresponds to the type of E_f. In the most common case, it is D → D, but it can be D, D → D, . . . , D^k → D, The best solution f* (which always exists and is unique and computable for a any domain in D*) is the least solution under the approximation ordering in D*.

Constructing the Least Solution

How do we know that any solution exists to the equation $f = E_f$? We will construct the least solution and prove it is a solution!

Since the domain D^* for f is a Scott-Domain, this domain has a least element \bot_{D^*} that approximates every solution to the equation.

Now form the function $F: D^* \to D^*$ defined by $F(f) = E_f$, or equivalently,

 $F = \lambda f \cdot E_f$ where $\lambda f \cdot E_f$ is *monotonic* and *continuous* (by a lemma we skipped). Note that for a recursive definition of a function, F is a *functional*.

Consider the sequence $S: \perp_{D^*}$, $F(\perp_{D^*})$, $F(F(\perp_{D^*}))$, ..., $F^k(\perp_{D^*})$, ...

Claim: S is an ascending chain (chain for short) in $D^* \rightarrow D^*$.

Proof. $\perp_{D} \leq F(\perp_{D^{*}})$ by the definition of \perp_{D} . If $M \leq N$ then $F(M) \leq F(N)$ by monotonicity. Hence, $F^{k}(\perp_{D}) \leq F(F^{k}(\perp_{D}))$ by induction on k. Q.E.D.

Claim: 5 has a least upper bound f*.

Proof. Trivial. **S** is a chain in **D*** and hence must have a least upper bound because **D*** is a Scott-Domain. If **D*** is a function domain, then **f*** is continuous by definition.

Proving **f*** is a fixed point of **F**

Must show: $F(f^*) = f^*$ where $F = \lambda f \cdot E_f$

Claim: By definition $f^* = \coprod F^k(\bot_{D^*})$ Since F is continuous $F(f^*) = F(\coprod F^k(\bot_{D^*})) = \coprod F^{k+1}(\bot_{D^*}) = \coprod F^k(\bot_{D^*})$ $= f^*$.

Note: The second step above relies on the continuity of F and the third depends on the fact that $F^0(\bot_{D^*}) = \bot_{D^*} \le F(\bot_{D^*})$.

Q.E.D.

Example

Look at factorial in detail by running the DrRacket stepper or conceptualizing strict continuous functions mapping N into N where is the domain natural numbers including ⊥, which can be represented as graphs (sets of pairs) over $\mathbb{N}-\{\bot\}$. The same observation applies to the domain of Jam values which includes N as a subdomain.

How Can We Compute **f*** Given **F**?

- Need to construct $F^{\infty}(\bot)$ from F. Can we write code for a function Y such that $Y(F) = f^* = F^{\infty}(\bot)$.
- Idea: use syntactic trick well known in the λ -calculus to build a potentially infinite stack of Fs, based on an understanding of how evaluation of $\Omega = (\lambda x.(x x))(\lambda x.(x x))$ works.
- Preliminary attempt: $Y(F) = (\lambda x. F(x x)) (\lambda x. F(x x))$
- Reduces to (in one step) to: $F((\lambda x. F(x x)) (\lambda x. F(x x)))$
- Reduces to (in k steps) to: $F^{k}((\lambda x. F(x x))(\lambda x. F(x x)))$

How does the Code for Y Work?

Does this work for Scheme (or Java with an appropriate encoding of functions as anonymous inner classes)? No! Why not? What about divergence? Y(FACT)

```
    = (λx.FACT(x x))(λx.FACT(x x))
    = FACT((λx.FACT(x x))(λx.FACT(x x)))
    = FACT(FACT(...)) diverging like Ω) but growing with each reduction
```

Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive function definition must have the form λf . λn . M. Hence,

```
(\lambda F.((\lambda x.F(x x)) (\lambda x.F(x x)))) G

= G ((\lambda x.G(x x)) (\lambda x.G(x x)))

= (\lambda f.\lambda n.M) ((\lambda x.G(x x)) (\lambda x.G(x x))) (\lambda x.G(x x)))

= \lambda n.M_{\text{f} \infty (\lambda x.G(x x)) (\lambda x.G(x x))]}
```

which is a value. If the evaluation of M does not require evaluating an occurrence of f, then $(\lambda x. G(x x)) (\lambda x. G(x x))$ is not evaluated. Otherwise, the binding of x is unwound only as many times as required to get to the base case in the definition $f = \lambda n. M$.

Exercise: How can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam?

Why Does Call-by-name Y Work?

By assumption the functional G corresponding to a recursive function definition must have the form $\lambda f \cdot \lambda n \cdot M$. Hence,

```
(\lambda F.((\lambda x.F(x x))(\lambda x.F(x x))))G
= G((\lambda x.G(x x))(\lambda x.G(x x)))
= (\lambda f.\lambda n.M) ((\lambda x.G(x x)) (\lambda x.G(x x)))
= \lambda n.M_{[f \leftarrow (\lambda x.G(x x)) (\lambda x.G(x x))]}
which is a value. If the evaluation of M does not require
evaluating an occurrence of f, then (\lambda x.G(x x))(\lambda x.G(x x))
is not evaluated. Otherwise, the binding of \mathbf{x} is unwound only as
many times as required to get to the base case in the definition f
= \lambda n.M. But each unwinding requires a few reduction steps, so
this definition is a poor way to implement recursion!
```

Exercise: how can we workaround this problem to create a version of the Y operator that works for call-by-value Scheme and Jam?