Comp 411
 Principles of Programming Languages Lecture 14
 Eliminating Lambda Using Combinators

Corky Cartwright
February 24, 2021

How to Eliminate lambda (map in Jam)

Goal: devise a few combinators (functions expressed as λ-abstractions with no free variables) that enable us to express all λ-expressions without explicitly using λ. Notation: let $\lambda^{*} x . M$ denote $\lambda x . M$ converted to an equivalent syntactic form that eliminates the starred λ. Then

$$
\begin{aligned}
& \lambda^{*} x . x \rightarrow I \quad(w h e r e ~ I ~=~ \lambda x . x) \\
& \left.\lambda^{*} x . y \rightarrow K y \text { (where } K=\lambda y . \lambda x . y\right) \\
& \lambda^{*} x .(M N) \rightarrow S\left(\lambda^{*} x . M\right)\left(\lambda^{*} x \cdot N\right) \\
& \text { (where } S=\lambda x \cdot \lambda y \cdot \lambda z \cdot((x \quad z)(y z)))
\end{aligned}
$$

How to Eliminate lambda (map in Jam) cont.

Question: Where did S come from?

- Intuition: it falls out when we formulate the translation to combinatory form using structural recursion on the abstract syntax of λ-expressions.
- The first two cases on the preceding slide do not involve recursion.
- In the third case, the form of the "magic" S combinator is determined by structural recursion! It is simply the pure λ-abstraction that works when plugged in for λ^{*}.

How Can We Systematically Eliminate All $\boldsymbol{\lambda} s$?

Strategy:

- Eliminate λ-abstractions from inside out, one-at-a-time. This process terminates because it strictly reduces the sum of the depth*s of every λ-abstraction. The definition of depth* is a bit tricky because each reduction rule (on slide 2) must strictly lower it for all $\boldsymbol{\lambda}$-abstractions. The rule involving \mathbf{S} must be handled delicately.
- Warning: this transformation can (and usually does) cause exponential blow-up because the third rule replaces one $\boldsymbol{\lambda}$ abstraction by two of them. Note that the depth* function grows exponentially with tree depth because the depth* must add the depths of both subtrees of an application.

Final Observations

- Checking the App case

$$
\begin{aligned}
& S(\lambda x \cdot M)(\lambda x \cdot N) \\
= & (\lambda x \cdot \lambda y \cdot \lambda z \cdot(x z)(y z))(\lambda x \cdot M)(\lambda x \cdot N) \\
= & (\lambda y \cdot \lambda z \cdot((\lambda x \cdot M) z)(y z))(\lambda x \cdot N) \\
= & (\lambda z \cdot((\lambda x \cdot M) z)((\lambda x \cdot N) z)) \\
= & \left(\lambda z \cdot\left(M_{x-z}\right)((\lambda x \cdot N) z)\right) \\
= & \left(\lambda z \cdot\left(M_{x-z}\right)\left(N_{x-z}\right)\right)=\lambda x \cdot(M N) \quad(b y \alpha-c o n v e r s i o n)
\end{aligned}
$$

Note: the names $\mathbf{x} \mathbf{y} \mathbf{z}$ are fresh and arbitrary, distinct from any free names in $\lambda x . M \lambda x . N$

