
Comp 411
Principles of Programming Languages

Lecture 18
Run-time Environment Representations II

Corky Cartwright

March 2, 2020

Review

• In Algol-like languages, the collection of environments that exist

at any point during a computation is embedded in the machine

control stack supporting (recursive) procedure calls. When the

frames of the control stack are used in this way, they are called

activation records.

• In each activation record, a pointer called the static link points to

the environment parent of the record. Similarly, a pointer called

the dynamic link points to the preceding stack frame (activation

record) to which control will return when the current

computation [conducted using the current activation record]

completes. The static link is used for looking up non-local

bindings (of free variables in the current let or lambda-

abstraction) in the environment.

• The dynamic link is used to return control from the current

“procedure” to its caller (whose local variables may not be

accessible from the current frame).

Example I
Consider the following Scheme program to reverse a list:

(define rev (lambda (l)
(letrec
[(revhelp ; :=

(lambda (tl acc)
(if (empty? tl) acc

(revhelp (rest tl) (cons (first tl) acc)))))]
(revhelp l empty))))

The Pidgin Algol equivalent (extended to include functional lists as built-in type:

List rev(l: List) = {
{ List revhelp(tl: List, acc: List) = {

if empty?(tl) then acc else revhelp(rest(tl), cons(first(tl), acc)) };
revhelp(l, empty)

}}

What happens when (rev '(0 1)) is called?

• The top level call on rev allocates activation record (AR) #1 with null static and dynamic

links and a slot for l (el) initialized to '(0 1).

• The body of rev (executing in AR #1) allocates AR #2 for the letrec with static and

dynamic links pointing to preceding activation record and a slot for revhelp initialized to

the closure for its definition.

• The body of revhelp allocates AR #3 record for the recursive call on revhelp with static

link taken from closure binding of revhelp (in AR #2) and dynamic link pointing to

preceding activation record.

Example I cont.

• Since l is not empty, body of revhelp allocates AR #4 for the recursive call

on revhelp with static link taken from closure binding of revhelp, dynamic link …,

and slots for tl and acc initialized to '(1) and '(0), respectively.

• Since l is not empty, body of revhelp allocates AR #5 record for recursive call

on revhelp with static link taken from closure binding of revhelp, dynamic link …,

and slots for tl and acc initialized to '() and '(1 0), respectively.

• Since l is empty, body of revhelp in context of AR #5 returns the value '(1 0), popping AR

#5 off the stack.

• The pending evaluation in AR #4 returns the value '(1 0), popping AR #4.

• The pending evaluation in AR #3 returns the value '(1 0), popping AR #3.

• The pending evaluation in AR #2 returns the value '(1 0), popping AR #2.

• The pending evaluation in AR #1 returns the value '(1 0), popping AR #1.

Notes:

1. The last four steps are trivial because they are returns from tail calls.

2. The dynamic link is always set to point to the preceding AR.

3. Algol 60 was designed so that the ARs could be stack allocated (and deallocated). Function

values are not “first-class”.

4. Guy Steele’s heap allocation “hack” (to be covered later) extends the Algol stack allocation

runtime to support to languages supporting first-class functions/procedures.

5. In Java, inner classes enable the nesting of scopes as in Algol; the static chain is formed by

embedding hidden parent instance pointers in the inner class objects. In addition all non-local

variables accessed in an inner class must be final so that they can be copied into the inner class

instances.

●

Example II
Consider the following Scheme program to reverse a list:
(define lookup (lambda (sym env)
(letrec

[(lookup-help
(lambda (env)
(cond [(empty? env) null]

[(eq? sym (pair-var (first env))
(pair-val (first env))]

[else (lookup-help (rest env) tl)]))]
(lookup-help env))))

Let’s trace the evaluation of (lookup 'a (cons (make-pair 'a 5) null))

• The top-level call on lookup allocates AR #1 with null static link and slots

for sym and env initialized to 'a and '(['a 5])).

• The body of lookup (executing in AR #1) allocates AR #2 for the block with the

static link pointing to AR #1 and a slot for lookup-help initialized to the closure

for its definition.

• The body of the block executing in AR #2 allocates AR #3 for the call on lookup-

help with the static link extracted from the closure bound to lookup-help and a

slot for env initialized to '(['a 5])) (the value of env in the environment

determined by the static link of AR #2).

• The body of lookup-help executing in AR #3 looks at env and finds a match for

sym (found in the static chain in AR #1) in the first pair, namely ['a 5] and

returns that pair, popping AR #3, which bubbles up through tail calls to point of

Exceptions

Exceptions were not included in Algol 60 or most of its

successors (Pascal, Algol W, C). But the Algol 60 run-time

stack can easily handle the Java try/catch construct.

How does exception handling work? Activation records must

include a catch table for the active catch (assuming one exists)

listing the caught exception classes (types) and their handlers (the

bodies of the catch clauses). (A catch is active if control is

within the corresponding try block.) When an exception is

thrown the executing code (interpreter or compiled code) searches

back through the dynamic chain⸺popping exited frames off the

stack⸺to find the first matching catch clause.

.

