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What is a Type?

Canonical example: consider the Jam expression of the form

if (big-ugly-expression)
(5)(6)

else 17

which may be embedded deep inside a program.  What type should a 
language translator (<compiler/interpreter) assign to this expression?

How will this expression behave?  If big-ugly-expression> is false, 
then the expression will produce a int result.  In this case, it is 
plausible for the type-checker to return int as the type of 17.  But what 
if big-ugly-expression is true?  Then the expression will generate a 
run-time error.  Even worse, it is a statically detectable run-time error.

Type-checkers generally assume all code fragments are meaningful 
(reachable in execution).  Otherwise, why is the fragment included as 
part of the program?  Hence, all static type checkers will reject this 
expression – even if big-ugly-expression is obviously false (e.g., big-
ugly-expression is the constant false).



Intuitive Assumptions in Type Checking
Idea 1:  Types are names for sets of values. 

Idea 2:  The valid sets of ``input values'' for each program operation can be 
described in terms of types (most of the time).

In most cases, the second idea can be made completely true by incorporating it as part 
of the contract for the operation either by extending the domain of the operation or 
explicitly reporting when it throws exceptions.  Example: zip in a functional 
language.  In this case, we typically fudge the definition so it is well-defined on 
unequal length lists.

Idea 3:  The application of program operations and the returning of values as 
the results of defined operations (methods, functions, procedures) induces 
constraints on program types.  

The mathematical constraints are subtyping (subset) relationships: 
(i) the type of an operation argument must be a subtype of its declared input type;

(ii) the type of the result returned by an operation must be a subtype of its declared 
result type.

In practice, most type systems force the type equality instead of type containment.  It 
greatly simplifies the structure of the type systems.



Typed λ-Languages

The (simply) typed λ-calculus is the foundation of structural typing 

which is the overwhelmingly dominant typing discipline in functional 

(but not OO) languages.

Syntax:

M :: = λ V:τ . M | (M M) | V | C

τ :: = D1 | … | Dn | τ → τ

where C is an optional set of constants (empty in the pure simply typed 

λ-calculus); D1, …, Dn are disjoint domains of primitive values (only 

one mythical domain D for the pure simply typed λ-calculus) called 

primitive types and V is the set of variable symbols.  We will almost 

always work in extensions of the pure λ-calculus like Jam that include 

constant values and operations and primitive types.  We will sometimes 

omit the typing for a variable introduced in a λ-expression.



Typing Rules for the (Simply) Typed λ-Calculus

A typing judgment has form: Γ Ͱ M:τ

where Γ (the Greek letter “capital gamma”) is called the type environment which 

maps a finite set of type identifiers to types.  Each pair in the function [viewed as a 

relation] is written x:τ where x is either a variable or a constant and τ is a type.  

The inference rules for the pure (simply) typed λ-calculus are:

Γ,{x:τ} Ͱ x:τ (binding axiom)

Γ,{x:σ} Ͱ M:τ; x not free in Γ
――――――――――――――――――――――――――  (abstraction rule)

Γ Ͱ λx.M:σ→τ

Γ Ͱ M:σ→τ; Γ Ͱ N:σ 
――――――――――――――――― (application rule)

Γ Ͱ (M N):τ



Typing Rules for Typed λ-Languages

• A typing for an expression M given the type environment Γ is 
an inference (proof) tree for a typing judgment of the form Γ
Ͱ M:τ.

• Top level programs are typed with respect to a base type 
environment Γ0 that contains the types of all program 
constants (including functions).  For the simply typed λ-
calculus, the base type environment is empty, because there 
are no constants in the pure simply typed λ-calculus.

• Typed λ-languages require exact matching between the input 
type of a function and the type of arguments to which it is 
applied.  Why?  There is no subtyping.   Every value belongs 
to a unique type.

• Every constant c in C has a corresponding type in the base 
type environment Γ0.  The arity of each constant c must 
match its type.

• Recall that the pure simply typed calculus has no constants.


