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A Fatal Weakness in Simple Structural Typing

Structural similar types like list-of-int and list-of-bool are 
completely disjoint.  Standard list operations that do not depend on the 
element type must be rewritten for every different element type.  There 
are no common abstractions connecting list-of-int and list-of-bool
because they are disjoint types like int and bool. 

The solution is to introduce type parameterization (polymorphism) into 
the data domain and the corresponding type system.  Instead of 
defining

int-list :: = empty() | consint(int, int-list)

bool-list :: = empty() | consbool(bool, bool-list)

...

we define a single parameterized form of list:

list T :: = empty() | cons(T, list T)



What Types Correspond to Parametric Data?
Henceforth, we will assume that our λ-language supports an arbitrary 

number of arguments in λ-abstractions, which is required to support 

pure let constructions with an arbitrary number of bindings.

In the data definition:

list T :: = empty() | cons(T, list T)

what are the types of data operations like empty, cons, and the 

corresponding accessors?  We need to introduce the notion of type 

schemes.  A type scheme has syntax

∀α1 · · · αn . τ

where α1, ..., αn (n > 0) are type variables, and τ is a type that may 

include type variables.  The types of the data operations in our example 

are:

empty: ∀α ( → list α)

cons: ∀α (α x list α → list α)

cons-1: ∀α (list α → α)

cons-2: ∀α (list α → list α) 



How Are Type Schemes Added to the Type System?

Two Options:

1. First option: explicit polymorphism.  We add type variables, explicit type abstraction 

and application to the programming language. The expressions in our language are:

M :: = λv:σ. M | (M N) | V | Λt. M | (M τ)
τ :: = D1 | … | Dn | (σ → τ) | ∀t τ

where V is the set of vars, v:σ is a (finite) list of vars together with their types,  T is the 

set of type variables, t is a finite list of type variables, M is an expression, N is a (finite) 

sequence of expressions, τ is a type expression, and σ is a finite cross product of  type 

expressions, and D1 …, Dn are primitive types. The symbol Λ is a capital λ; it denotes 

type abstraction, just as λ represents value abstraction.  This extension is more general

than merely adding type schemes since quantifiers can be embedded within types. It is 

called the polymorphic λ-calculus or System F.  The typing rules for the simply typed 

λ-calculus can be extended to type programs in the polymorphic λ-calculus (as shown 

on the next slide), but type reconstruction (determining the typing, if any, for an 

untyped expression) is undecidable. The polymorphic λ-calculus is clumsy in practice 

and; it has not been incorporated in any practical programming language.  

Nevertheless, it is worth understanding because of its impact on the generic type 

systems for OO languages (like Java 5+).

2. Better option: implicit polymorphism (discussed on next few slides)



Typing Rules for the Polymorphic λ-Calculus

• The binding axiom and rules for (functional) abstraction 
and (functional) application same as in the simply typed 
λ-calculus (with λ-abstraction generalized to arbitrary 
finite arity) with one qualification: types may contain 
type variables.

• Rules for type abstraction and type application:

Γ Ͱ M:τ; α not free in Γ
―――――――――――――――――  (type abstraction rule)

Γ Ͱ Λα.M: Ɐα τ

Γ Ͱ M: Ɐα τ
――――――――――――― (type application rule)

Γ Ͱ (M σ):τ[α:=σ]

Note: type abstraction and application are degenerate if τ does not contain α



Implicit Polymorphism
Second option for interpreting type schemes, which is much more important in practice than 
explicit polymorphism 

(i) We restrict type expressions to ordinary type expressions (possibly containing type 
variables) and type schemes which are ordinary type expressions surrounded by a universal 
quantifier at the top level.  Hence, ∀ can only appear at the top-level in a type expression and 
the body of a type scheme is an ordinary type.

(ii) We make no changes to the programming language, which looks like a (dynamically typed) 
λ-language. 

If we ignore Milner’s polymorphic let construct (explained later), the typing rules are the same 
as for ordinary typed λ-languages, except:

• the inductive definition of types τ includes type variables α as an additional base case;

• the type environment can include type schemes (as defined earlier) in place of types (but 
type schemes can only appear in type environments!); and

• an additional axiom supports fully instantiating type schemes:

Γ, x:∀α S Ͱ x: S'

where S is a type scheme and S' is a substitution instance of S (replacing all type 
quantified type variables α) containing no quantifiers.

Note: our typing rules will ensure that in any typing judgment Γ Ͱ M:τ, all variables in M are 
assigned types in M, all type variables in τ appear free in Γ, and type schemes (ordinary type 
expressions enclosed by quantification at the top level) only appear in Γ.  You should 
carefully study the Type Inference Study Guide.



Implicit Polymorphism cont.

Different instantiations of same type scheme axiom:

Γ, x:∀α(α→α) Ͱ x: int→int

Γ, x:∀α(α→α) Ͱ x: (int→int) → (int→int)

In the absence of polymorphic let, we can use primitive 
operations with schematic types because the types of primitive 
operations are built into the base environment (as in Assignment 
5), but how do we define new polymorphic operations?  We 
need to extend our language so that let and letrec introduce 
polymorphic operations!  Robin Milner introduced these 
constructions in his original formulation of the language ML, 
which has spawned a family of statically typed (mostly) 
functional languages including Haskell and Ocaml.  Haskell is 
purely functional while Ocaml is (mostly) functional.



Typed Jam and Polymorphic Jam

The course master web page contains links to a handout describing two 
different closely related 

let id := map x to x; in (id(id))(4)

If we interpret let as either pure let or recursive let as described in 
our previous lecture, this program is untypable because id is used two 
different ways: as the identity function for type int→int and for type 
int.

But we can revise (strengthen) our typing rule for (recursive) let as 
follows:

Γ, x:σ Ͱ M:σ; Γ,{x:close(σ,Γ)} Ͱ N:τ
―――――――――――――――――――――――――――――――――――  (polymorphic let rule)

Γ Ͱ let x:σ := M in N : τ

where close(σ,Γ) means find all of the free type variables α1 , ..., αn in 

σ that do not appear in Γ and generate ∀α1,…,αn σ.

Key intuition: the proof of  Γ, x:σ Ͱ M:σ is schematic in the free type 

variables.  Hence, we can instantiate them in the proof without breaking it!



Defining Polymorphic Functions
The following polymorphic let construct was Milner's greatest insight in 
devising ML.  Consider the Jam program

let id := map x to x; in (id(id))(4)

If we interpret let as either pure let or recursive let as described in our 
previous lecture, this program is untypable because id is used two different 
ways: as the identity function for type int→int and for type int.

But we can revise (strengthen) our typing rule for (recursive) let as follows:

Γ,{x:σ} Ͱ M:σ; Γ,{x:close(σ,Γ)} Ͱ N:τ
―――――――――――――――――――――――――――――――――――  (polymorphic let rule)

Γ Ͱ let x:σ := M in N : τ

where close(σ,Γ) means find all of the free type variables α1 , ..., αn in σ
that do not appear in Γ and generate ∀α1,…,αn σ.

Key intuition: the proof of  Γ,{x:σ} Ͱ M:σ is schematic in the free type 

variables in σ.  Hence, we can instantiate them in the proof without breaking 

it!



Type Reconstruction

Implicit polymorphism is far more important in practice than explicit 

polymorphism because the types in implicitly typed programs can easily be 

reconstructed if they are erased. (This process is often called “type inference” but 

we will use the term “reconstruction” instead of “inference” because we want to 

use the term “inference” to refer to formally proving programs are typable using 

typing rules.) Explicit polymorphism which forces explicit type abstraction and 

application is painful. 

How does type reconstruction work?  Mechanically build the type inference tree 

for a program using the typing rules with type variables for the types of all 

variables introduced in λ-abstractions.  To make this tree a valid proof tree, 

certain equality relationships must hold between type expressions (these equality 

constraints are implicit in the rules).  Generate the list of equality constraints and 

solve them (using unification which we will describe in our next lecture). 

This reconstruction process is algorithmic!  For this reason, we adopt the 

convention that types can be dropped from the binding occurrences of variables 

in implicitly polymorphic λ-languages. In languages supporting Hindley-Milner 

typing such annotations are typically optional.


