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Denotational Semantics

• The primary alternative to syntactic semantics is denotational 

semantics.  A denotational semantics maps abstract syntax trees 

into a set of denotations (mathematical values like numbers, 

lists, and functions).

• The denotations of simple data values like numbers and lists are 

essentially the same mathematical objects as syntactic values: 

they have simple inductive definitions with exactly the same 

structure as the corresponding abstract syntax trees.

• But denotations can also be complex mathematical objects like 

functions or sets.  For example, the denotation for a lambda-

abstraction in “pure” (functional) Scheme is a function mapping 

denotations to denotations--not some syntax tree as in a 

syntactic semantics.



Meta-interpreters

• Denotational semantics is rooted in mathematical logic: the semantics of 

terms (expressions) in the predicate calculus is defined denotationally by 

recursion on the syntactic structure of terms.  The meaning of each term 

is a value in a mathematical structure or algebra.

In the realm of programming languages, purely functional interpreters 

(defined by recursion on the structure of ASTs) constitute a restricted 

form of denotational definition.
• The defect is that the output of an actual interpreter is restricted to values that can be 

characterized syntactically.  (How do you output a function?)

• On the other hand, interpreters naturally introduce a simple form of  functional 

abstraction.  An efficient recursive interpreter accepts an extra input: an environment

mapping free variables to values, thus defining the meaning of a program expression 

as a function from environments to values.

• Syntactic interpreters are not denotational because they transform ASTs.  A 

denotational interpreter uses pure structural recursion.  To handle the bindings to 

variables, it cannot perform substitutions; it must maintain an environment of 

bindings instead.

•



Meta-interpreters cont.
• Interpreters written in a denotational style are often called meta-interpreters

because they are defined in a meta-mathematical framework where
programming language expressions and denotations are objects in the
framework.  The definition of the interpreter is a level above definitions of

functions in the language being defined.

• In mathematical logic, meta-level definitions are expressed informally as
definitions of mathematical functions.

• In program semantics, meta-level definitions are expressed in a convenient
functional framework with a semantics that is easily defined and understood
using informal mathematics.  Formal denotational definitions are written in a
mathematical meta-language corresponding to some formulation of a
Universal Domain (a mathematical domain in which all relevant programming
language domains can be simply embedded, usually as projections).  This
material is subject of a graduate level course on domain theory.

• A functional interpreter for language L written in a functional subset of L is
called a meta-circular interpreter.  It really isn't circular because it reduces the
meaning of all programs to a single purely functional program which can be
understood independently using simple mathematical machinery (inductive
definitions over familiar mathematical domains).



Denotational Building Blocks

• Inductively defined ASTs for program syntax.  We have
thoroughly discussed this topic.

• What about denotations?  For now, we will only use simple
inductively defined values (without functional abstraction)
like numbers, lists, tuples, etc.

• What about environments?  Mathematicians like to use
functions.  An environment is a function from variables to
denotations.  But environment functions are special because
they are finite.  Software engineers prefer to represent them
as lists of pairs, binding variables to denotations.

• In “higher-order” languages, functions are data objects.  
How do we represent them?  For now we will use ASTs
possibly supplemented by simple denotations (as described
above).



Critique of Deferred Substitution

Interpreter from Lecture 6

• How did we represent the denotations of lambda-

abstractions (functions) in environments?  By

their ASTs.  Is this implementation correct?  No!

• Counterexample:
(let ([twice (lambda (f) (lambda (x) (f (f x))))]) 

(let ([x 5])

((twice (lambda (y) (+ x y))) 0)))



Evaluate (syntactically)
(let [(twice (lambda (f) (lambda (x) (f (f x)))))]

(let [(x 5)]
((twice (lambda (y) (+ x y))) 0)))

⇒ (let [(x 5)]
(((lambda (f) (lambda (x) (f (f x))))

(lambda (y) (+ x y))) 
0))

⇒ (((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ 5 y))) 
0)

⇒ ((lambda (x) ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) x))))
0)

⇒ ((lambda (y) (+ 5 y)) ((lambda (y) (+ 5 y)) 0))
⇒ ((lambda (y) (+ 5 y)) (+ 5 0))
⇒ ((lambda (y) (+ 5 y)) 5) ⇒ (+ 5 5) ⇒ 10



Evaluate (using our bad interpreter)

(let [(twice (lambda (f) (lambda (x) (f (f x)))))]
(let (x 5)]
(twice (lambda (y) (+ x y))) 0))  ⇒

{twice = (lambda (f) (lambda (x) (f (f x))))}
(let [(x 5)] ((twice (lambda (y) (+ x y))) 0))  ⇒

{x = 5, twice = (lambda (f) (lambda (x) (f (f x))))}
((twice (lambda (y) (+ x y))) 0)  ⇒

{x = 5, ... }
(((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ x y))) 0) ⇒

{f = (lambda (y) (+ x y)), x = 5, ... } ((lambda (x) (f (f x))) 0) ⇒
{x = 0, f = (lambda (y) (+ x y)), ... } (f (f x)) ⇒
{x = 0, f = (lambda (y) (+ x y)), ... } ((lambda (y) (+ x y)) (f x)) ⇒
{x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) x)) ⇒
{x = 0, ... } ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) 0)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ x y)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 y)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) (+ 0 0)) ⇒
{y = 0, x = 0, ... } ((lambda (y) (+ x y)) 0) ⇒
{y = 0, y = 0, x = 0, ... } (+ x y) ⇒ { y = 0, ... } (+ 0 y) ⇒
{ ... } (+ 0 0) ⇒ 0



Closures Are Essential!

• Exercise: evaluate the same expression using our broken 

interpreter.  The computed “answer” is 0.   The trace appears above!

• The interpreter uses the wrong binding for the free variable x in

(lambda (y) (+ x y))
• The environment records deferred substitutions.  When we pass a 

function as an argument, we need to pass a “package” including the 

deferred substitutions.  Why?  The function will be applied in a 

different environment which may associate the wrong bindings it 

free variables. In the PL (programming languages) literature, these 

packages (code representation + environment) are called closures.

• Note the similarity between this mistake and the “capture of bound 

variables”.  Unfortunately, this mistake has been labeled as a 

feature rather than a bug in much of the PL literature.  It is called 

“dynamic scoping” rather than a horrendous mistake.  Watch out 

whenever you must program in a language with “dynamic 

scoping”.



Correct Semantic Interpreter
(define-struct (closure proc env)) ; closure is name of type
;; V = Const | Closure  ; revises our former definition of V
;; Binding = (make-Binding Sym V)  ; Note: Sym not Var
;; Env = (listOf Binding)          ; Lists are built-in to Scheme
;; Closure = (make-closure Proc Env)
;; R Env → V
(define eval

(lambda (M env)
(cond

((var? M) (lookup (var-name M) env))
((const? M) M)
((proc? M)) (make-closure M env))
((add? M)                        ; M has form (+ l r)

(const-add (eval (add-left M) env) (eval (add-right M) env)))
(else                            ; M has form (N1 N2)

(apply (eval (app-rator M) env) (eval (app-rand M) env))))))

;; Closure V → V
(define apply

(lambda (cl v)                       ; assume cl is a closure
(eval (proc-body (closure-proc cl))

(cons (make-binding (proc-param (closure-proc cl)) v)
(closure-env cl)))



A Meta-Interpreter for CBN
• Recall the syntactic semantics for the CBN version of LC.  What is 

different from our standard CBV (call-by-value) semantics for LC?  

What is our rule for reducing applications of program-defined 

functions (lambda-abstractions) (lambda x M)?  Are there any 

restrictions on  β-reduction?

• How do we implement CBN (unrestricted) β-reduction in a meta-

interpreter.  Recall that we must defer substitutions for parameters in 

the lambda-abstractions.  How can we get the right answer even when 

we defer evaluation?  What did we do in our CBV interpreter when we 

passed functions (lambda-abstractions) as argument values?

• What problem do closures eliminate?  Finding the correct values for 

free variables in the bundled lambda-abstraction.  In CBN we need to  

bind variables to unevaluated expressions, right?  How can we avoid 

getting incorrect values for free variables in such expressions, just like 

we did for lambda-abstractions as values?  You must answer this 

question to do Project 2.




