
COMP 311 1

Type Systems

COMP 311
Rice University
Houston, Texas

COMP 311 2

Type Systems

 Type Systems for Programming Language were invented by
mathematicians before electronic computers were invented.

 What is a type? A meaningful subset of the set of the domain of data
values used in a program. Types are used to describe the intended
behavior of program operations.

 The concept is derived from mathematics; functions have specified domain
and co-domains sets which are often called types. In fact, a function with
domain A and co-domain B is often said to have type A Æ B. Moveover,
the variables used in mathematical formulas typically have specified types

 Mathematicians informally check that uses of functions and variables in
formulas are respected just as they informally check that reasoning used in
proofs is sound.

 In computer programs, some forms of “type checking” can be formalized
and automated.

COMP 311 3

Type Systems

Foundation: type systems for functional languages
• Canonical functional language: the l-calculus

 M ::= c | x | (M M) | (lx M)

 c Œ C (a set of constants)

 x Œ V (a set of variables)

 So the l-calculus is really a family of languages that differ only in the
constants and variables.

• A simple type system for the l-calculus.

• A type has the form
t ::= b | t Æ t

b Œ B (a set of base types)

• Augmented language syntax:
M ::= c | x | (M M) | (lx:t M)

COMP 311 4

Type Systems

Typing rules for the (simply) typed l-calculus

• Each constant c Œ C has a given type c(c)

• Since an expression M inside a l-calculus program may contain free
variables, type rules keep track of the types of these variables using a type
environment G Õ V ¥ T where T denotes the set of types t. This type
environment is simply a symbol table that records a symbol’s type!

• Assume M:s Æ t and N: s . Then (M N): t.

• Assume x: s implies that M: t. Then (lx: s M): s Æ t

The process of assigning types to l-calculus programs can be rigorously
formalized as a natural deduction system where the formal sentences are
typing judgements of the form G |- M: t and the mechanisms for generating
true sentences are
• axioms of the form G |- M: t and

• inference rules of the form
 G1 |- M1: t1, …, GN |- MN: tN fi G |- M: t

COMP 311 5

Type Systems

Explanation:

• Axioms are typing judgements that are manifestly true.

• Inference rules produce true consequences given true premises

• Common notation for rules
G1 |- M1: t1, …, GN |- MN:tN

 G |- M: t

Natural deduction rules for (simply typed l-calculus) [G is arbitrary]
• G, x:t |- x: t
• G |- c: c(c)

• G |- M:s Æ t, G |- N:s (Æ elimination or application)

 G |- (M N): t.

• G, x:s |- M: t. (Æ introduction or abstraction)

 G |- (lx:s M): s Æ t

COMP 311 6

Type Systems

Example l-calculus language:

• C = I » F where

I = {…, -2, -1, 0, 1, 2 …}

F = {+, -, *, / }

• V = {a, b, … z, aa, … }

• B = {int}

• c(i) = int for i Œ I; c(f) = int Æ (int Æ int)

• What is type of (lf: int Æ int (lg: int Æ int (lx: int (f (g x)))))?

(int Æ int) Æ ((int Æ int) Æ (int Æ int))

which is the “curried” form of

(int Æ int) ¥ (int Æ int) Æ (int Æ int)

COMP 311 7

Type Systems : Sample Typing Proof

Show:
 ∅ | (lf: intÆint . (lg: intÆint . (lx:int . (f (g x))))): (intÆint) Æ ((intÆint) Æ (intÆint))

Tree1: f :intÆint, g :intÆint, x:int | g :intÆint, f :intÆint, g :intÆint, x:int | x :int
 f :intÆint, g :intÆint, x:int | (g x): int

Tree2: f :intÆint, g :intÆint, x:int | f :intÆint, Tree1

 f :intÆint, g :intÆint, x:int | (f (g x)): int

 f :intÆint, g :intÆint | (l x:int . (f (g x))): intÆint

 f :intÆint | ((l g :intÆint . (l x:int . (f (g x)))) : (intÆint) Æ (intÆint)

∅ | (l f :intÆint . (l g :intÆint . (l x:int . (f (g x))))) : (intÆint) Æ ((intÆint) Æ (intÆint))

COMP 311 8

Type Systems

Question: what is the relationship between the (untyped) l-calculus and the (simply)
typed l-calculus?

_ Many expressions (and complete programs) in the (untyped) l-calculus cannot
be typed in the (simply) typed l-calculus!

_ Example: (lx (x x))

x requires a type s = s Æ t, but no such type exists

_ If the constant operations terminate for all inputs, then every typable program
terminates for all inputs!

 Question: is there a tractable algorithm for determining the type of an expression in
the (untyped) l-calculus and rejecting the expression if no such type exists? Yes!
The standard algorithm (called the type reconstruction algorithm) is based on a
very simple idea:

_ generate a distinct type variable for every subexpression of the given
expression M,

_ record the equality constraints between these variables dictated by the
typing rule that matches the program context in which the subexpression
associated with each variable appears, and

_ solve these constraints.

COMP 311 9

Type Systems

More details:

_ Create only one type variable for each distinct program variable; all
occurrences of a given variable must have the same type!

_ Create a “compound type variable” s Æ t for each subexpression that
appears as the head M of an application (M N).

_ For each constant c, assign it the type c(c). Every subexpression now has
a symbolic type.

_ For each application (M N) where M has symbolic type s Æ t, equate s with
the symbolic type of N and equate t with the symbolic type of (M N).

_ For each abstraction (lx M) where x has symbolic type s and M has
symbolic type t, equate s Æ t with the symbolic type of (lx M).

_ Solve the resulting set of equations on symbolic types (which are just
symbolic expressions that can be represented as trees) using the
unification algorithm (invented by John Alan Robinson, a professor of
philosophy at Rice in the 1960’s). The generated solution is a substitution
mapping type variables to symbolic types.

COMP 311 10

Type Systems

What is unification? Tree pattern matching where match variables only
appear as leaves.

_ A naïve recursive algorithm can be written in a few lines of Scheme
or ML.

_ The common practical algorithm relies on a union-find
representation of finite sets to record equivalent symbolic types.
Every set contains at least one symbolic type that is just a variable.
This algorithm runs in essentially linear time.

_ A linear algorithm exists but it is not as efficient for problems of
practical size as the union-find based algorithm.

_ Question: is the reconstructed type unique? Many l-calculus programs
have multiple typings. Consider the program (lx x). It can be assigned
the type sÆs, for any type s Œ T , e.g., (int Æ int), (int Æ int) Æ (int
Æ int), …

The type reconstruction algorithm deftly addresses this problem by
returning the most general symbolic typing; all of the possible
ground typings (containing no type variables) are substitution
instances of this typing. For this reason, the typing produced by the
type reconstruction algorithm is called the principal typing (or type)
of the program.

COMP 311 11

Type Systems

Robin Milner’s Creative Leaps

_ The simple type system for the l-calculus is truly onerous because
polymorphic functions (those with variables in their principal types) have
to be rewritten for each different typing. The original Pascal language
suffers from precisely this problem.

 Milner recognized that a surprisingly useful form of polymorphism could be
added to the (simply) typed l-calculus by adding a let construct to the
language family. The extension adds one new form to the family syntax

M ::= … | (let (x M) M)

 Given an expression of the form

(let (x M) N)

 x can be used polymorphically in N without breaking the principal typing
property. Type reconstruction can first infer the principal type of M and
subsequently use a renamed version of this type (a fresh name for each
distinct type variable) for each distinct occurrence of x in N.

COMP 311 12

Type Systems

Robin Milner’s Creative Leaps continued

 Explanation: in essence, the definition of x is treated like a macro
(abbreviation) that is replicated for each occurrence of x in N. Of course,
a language implementation only needs one copy of the code for M
provided that all the different instantiations of the principal type use the
same data layout.

 Example:

 In our simple l language: (let (i (lx x)) (((i +) (i 2)) 2))

 In a richer language of the family:

 (let (append (l x,y (if (empty? x) y (cons (first x) (append (rest x) y))))

 (append (cons (append (cons 1 empty) (cons 2 empty)) empty)
empty))

Note: empty and cons are polymorphic constants; let is recursive.

_ Milner also realized he could rigorously prove a that typable programs
cannot generate certain errors. Type reconstruction proves that run-time
type-errors cannot occur --- provided that we define the notion of type-
error rather narrowly. A similar theorem holds for Java (we think).

