
RETROSPECTIVE:

The Essence of Compiling with Continuations

Cormac Flanagan
Systems Research Center

Compaq
cormac.flanagan@compaq.com

Amr Sabry
Dept. of Computer Science

Indiana University
sabry@indiana.edu

Bruce F. Duba
Dept. of Computer Science

Seattle University
bduba@seattleu.edu

Matthias Felleisen
College of Computer Science

Northeastern University
matthias@ccs.neu.edu

Continuation-passing style (CPS) became a popular intermediate
representation for compilers of higher-order functional languages
during the 1980’s (Rabbit [20], Orbit [13], SML/NJ [3, 4]). The au-
thors of such compilers often cited conventional engineering bene-
fits. Appel [1, p.4] also stressed that one can perform βη-reduction
on the CPS intermediate language even though this is unsound on
the source language, which uses call-by-value. Indeed this obser-
vation is consistent with Plotkin’s [15] earlier work who formalized
the reasoning principles associated with call-by-value languages
before and after CPS conversion. For optimizing a call-by-value
source program one can only use βvηv reductions; after conversion
to CPS, one can use βη-reductions. Plotkin went on to prove that
one can perform strictly more optimizations using βη on the CPS-
converted program than using βvηv on source programs.

This situation provided us with the motivation to study and un-
derstand reductions on CPS terms and how they relate to reductions
on source programs. Building on Felleisen’s work on λ-calculi [8,
7, 9], Sabry and Felleisen produced a calculus for source programs
that exactly corresponds to βη on CPS terms [17, 18]. The key in-
sight is to relate every transformation step on CPS terms (including
the administrative reductions) to a corresponding transformation on
source terms. The additional reduction relations correspond to the
administrative reductions on CPS terms. Sabry and Felleisen called
those the A-reductions, and showed that βvηv� A on a call-by-value
language is equivalent to βη on a CPS’ed call-by-name language.
Better still, the set of A reductions is strongly normalizing, and
transforming a source term in A-normal form into a continuation-
passing style term produces a term without administrative redexes.
Sabry and Felleisen called this set of terms A-normal forms (ANF).

Upon further experimentation with the abstract machines devel-
oped by Felleisen et al. [6], it became clear that everything that
CPS compilers do to their intermediate representations could be
done just as naturally on A-normal forms. In fact, the abstract ma-
chines that define the meaning of the intermediate forms are almost
identical. The selected paper describes the result of this theoretical
and practical experimentation.

Surprisingly, the paper immediately received much attention in
the functional compiler community. The reviews, though, were
mixed. A large majority of compiler writers, including those who
had been historically dubious of CPS, reported that our paper con-
firmed their understanding in a precise and formal way. Some of
the strong advocates of CPS compilers, however, were unconvinced
that our analysis had captured the “essence” of their compilers. In
particular our βη model of CPS optimizations did not capture some

20 Years of the ACM/SIGPLAN Conference on Programming Language
Design and Implementation (1979-1999): A Selection, 2003.
Copyright 2003 ACM 1-58113-623-4 ...$5.00.

of the optimizations that CPS compilers perform. In particular, Ap-
pel and Kelsey considered those additional optimizations as an es-
sential part of compiling with continuations.

This criticism motivated a follow-up investigation. In the next
year’s PLDI, Sabry and Felleisen [19] partially answered the ques-
tion of the effect of the CPS transformation on the control and data
flow analysis. They explain the precise impact of CPS on the results
of the most widely used analyses.

One last sticky point still remained to the story. In the initial
phase of the compilation, CPS compilers represent continuations
as procedures and all calls to known procedures are converted to
immediate jumps. Naturally this also converts returns to known
continuations to jumps. Because continuations are not explicit in
the ANF representation this particular optimization could not be
expressed naturally. So in some sense, our model fails to cap-
ture part of the “essence” of compiling with continuations. Yet,
compiler writers abandoned CPS over the ten years following our
paper anyway. This includes the SML/NJ compiler, which was re-
designed with a new intermediate form close to ANF (Private com-
munication: Daniel Wang) as well as other compilers written since
then [21].

Both ANF and CPS have been shown to be closely related to the
SSA form [2, 12]. More recent compilers, such as Moby [16] and
MLton [10], exploit this connection by using a mixture of ANF,
SSA, and CPS to address the sticky point regarding known contin-
uations: only functions with known continuations are converted to
CPS to produce a representation that is closely related to SSA. This
enables conventional analyses and transformations to later convert
uses of known return continuations to direct jumps. This limited
use of CPS is called “contification” [10] or “local CPS conver-
sion” [16].

As a program representation, ANF had success beyond its orig-
inal role as an intermediate representation suitable for compiling
and analyzing functional programs. For example, it became quite
standard in the study of partial evaluation [11], and even in the
type-theoretic treatment of module systems [5, 14].

In summary, our paper succeeded in making compiler writers re-
consider their decisions about intermediate representations. It be-
came clear that their publicly stated reasons for choosing CPS had
been invalidated. They had to analyze their decisions in depth. The
result is that compilers now mostly use intermediate representations
based on ANF but with a local CPS transformation to enable addi-
tional optimization. We believe that our theoretical investigation
has thus produced a well thought out practical compromise.

REFERENCES
[1] Andrew W. Appel. Compiling with Continuations.

Cambridge University Press, 1992.

ACM SIGPLAN 502 Best of PLDI 1979-1999

[2] Andrew W. Appel. SSA is functional programming. ACM
SIGPLAN Notices, 33(4):17–20, April 1998.

[3] Andrew W. Appel and David B. MacQueen. Standard ML of
New Jersey. In J. Małuszyński and M. Wirsing, editors,
Proceedings of the 3rd Int. Symposium on Programming
Language Implementation and Logic Programming,
PLILP91, Passau, Germany, Lecture Notes in Computer
Science, pages 1–13. Springer-Verlag, August 1991.

[4] Andrew W. Appel and David B. MacQueen. Standard ML of
New Jersey. Technical Report TR-329-91, Princeton
University, Computer Science Department, June 1991.

[5] Matthias Blume and Andrew W. Appel. Lambda-splitting: A
higher-order approach to cross-module optimizations. In
Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming, pages 112–124,
Amsterdam, The Netherlands, 9–11 June 1997.

[6] M. Felleisen and D. P. Friedman. Control operators, the
SECD-machine, and the λ-calculus, pages 193–217.
North-Holland, 1986.

[7] Matthias Felleisen. λ-v-CS: An extended λ-calculus for
Scheme. In Proc. of 1988 ACM Conf. on Lisp and Functional
Programming, Snowbird, UT, USA, 25–27 July 1988, pages
72–85. ACM Press, New York, 1988.

[8] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker,
and Bruce Duba. Reasoning with continuations. In Proc. of
1st Ann. IEEE Symp. on Logic in Computer Science,
LICS’86, Cambridge, MA, USA, 16–18 June 1986, pages
131–141. IEEE Computer Society Press, Washington, DC,
1986.

[9] Matthias Felleisen and Robert Hieb. A revised report on the
syntactic theories of sequential control and state. Theoretical
Computer Science, 103(2):235–271, 1992.

[10] Matthew Fluet and Stephen Weeks. Contification using
dominators. In Cindy Norris and Jr. James B. Fenwick,
editors, Proceedings of the Sith ACM SIGPLAN
International Conference on Functional Programming
(ICFP-01), volume 36, 10 of ACM SIGPLAN notices, pages
2–13, New York, September 3–5 2001. ACM Press.

[11] John Hatcliff and Olivier Danvy. A computational
formalization for partial evaluation. Mathematical Structures
in Computer Science, 7(5):507–541, October 1997.

[12] Richard A. Kelsey. A correspondence between continuation
passing style and static single assignment form. ACM
SIGPLAN Notices, 30(3):13–22, March 1995.

[13] David Kranz, , Richard Kelsey, Jonathan Rees, Paul Hudak,
James Philbin, and Norman Adams. Orbit: An optimizing
compiler for Scheme. SIGPLAN Notices, 21(7):219–233,
July 1986. Proceedings of the ACM SIGPLAN ’86
Symposium on Compiler Construction.

[14] Xavier Leroy. A syntactic theory of type generativity and
sharing. Journal of Functional Programming, 6(5):667–698,
September 1996.

[15] G. Plotkin. Call-by-name, call-by-value, and the λ-calculus.
Theoretical Computer Science, 1(2):125–159, 1975.

[16] John Reppy. Local CPS conversion in a direct-style compiler.
In Proceedings of the Third ACM SIGPLAN Workshop on
Continuations (CW’01), pages 13–22, January 2001.

[17] Amr Sabry and Matthias Felleisen. Reasoning about
programs in continuation-passing style. In Proc. of 1992
ACM Conf. on Lisp and Functional Programming, San
Francisco, CA, USA, 22–24 June 1992, pages 288–298.
ACM Press, New York, 1992.

[18] Amr Sabry and Matthias Felleisen. Reasoning about
programs in continuation-passing style. Lisp and Symbolic
Computation, 6(3–4):289–360, 1993.

[19] Amr Sabry and Matthias Felleisen. Is continuation-passing
useful for data flow analysis? In Proceedings of the
Conference on Programming Language Design and
Implementation, pages 1–12, New York, NY, USA, June
1994. ACM Press.

[20] Jr. Steele, Guy L. Rabbit: A compiler for Scheme. Technical
Report AITR-474, Massachusetts Institute of Technology,
May 1978.

[21] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL : A type-directed optimizing compiler for ML. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implemantation, pages
181–192, New York, May 21–24 1996. ACM Press.

ACM SIGPLAN 503 Best of PLDI 1979-1999

ACM SIGPLAN 504 Best of PLDI 1979-1999

ACM SIGPLAN 505 Best of PLDI 1979-1999

ACM SIGPLAN 506 Best of PLDI 1979-1999

ACM SIGPLAN 507 Best of PLDI 1979-1999

ACM SIGPLAN 508 Best of PLDI 1979-1999

ACM SIGPLAN 509 Best of PLDI 1979-1999

ACM SIGPLAN 510 Best of PLDI 1979-1999

ACM SIGPLAN 511 Best of PLDI 1979-1999

ACM SIGPLAN 512 Best of PLDI 1979-1999

ACM SIGPLAN 513 Best of PLDI 1979-1999

ACM SIGPLAN 514 Best of PLDI 1979-1999

