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Key Intuitions

• Computation is incremental not monolithic

• Slogan: general computation is successive

approximation (typically in response to

successive demand for more information).

In simple computations, only the standard

output stream is repeatedly demanded until

EOF (end-of-file) datum is encountered.



Key Mathematical Concepts
• A partial order (po) is a set S with a reflexive, transitive, anti-

symmetric binary relation  See Wikipedia for a complete definition.

• A chain in a po is a countable totally ordered set c0 c1 c2 … ck 

… See Wikipedia for the definition of a countable set, which may be 

empty.

• A po is chain-complete iff every chain has a least upper bound (LUB) 

in the po.  Such a partial order is called a complete partial order (cpo). 

Since a chain can be empty,  every cpo must have a least element, 

which we denote by the symbol ⊥, called “bottom”. In the domain 

theory monograph, directed sets are used instead of  chains; it is easy 

to prove the two notions are equivalent for domains with a countable 

basis (defined below).  We are only interested in cpos with countable 

bases (because we are computer scientists!).

• A subset S within a po is consistent iff it has an upper bound in the po.

• A po is finitely consistent if every finite subset has a LUB.

• A finitary basis is a countable po in which every finite consistent set 

has a LUB.  



Key Mathematical Concepts

Semantic Domains II

• Given a finitary basis B, the (Scott) domain determined by B is the 

cpo created by adding LUBs for infinite chains in B.  The elements 

of B are called the finite elements of this domain.  The monograph 

contains an explicit construction of this domain using ideals.  The 

intuition is simple: the generated domain simply adds an element 

for each infinite chain of finite elements that is only above all 

elements in the downward closure of the chain.  Note that several 

different chains may have the same LUB.

• Given any subset S of a domain D,  the downward closure S↓ of S 

is the set of all elements of D less than some element of S.  Two 

chains are equivalent if their downward closures are identical.

• The topologically finite elements of the cpo determined by B are 

precisely the elements of B.  (Don’t worry about the definition of 

topologically finite; it is defined in the monograph.)



More Mathematical Details
All (incrementally) computable functions f mapping domain A into domain B

are:

• monotonic: x  y ⇒ f(x)  f(y)

• continuous: given a chain C = {ci | i ∈ N}, f(⊔ C) = ⊔ {f(c) | c ∈ C }
Note that a continuous function may not be computable. (Consider the natural extension [as defined 

below] of any conventional function mapping N into N that is not recursive.)

In practical programming languages, all primitive and library functions f are strict, i.e., f maps ⊥ to 

⊥.  If f is n-ary (n > 1),  f is strict iff f (x1,…, xn) = ⊥ if any input is ⊥.

Note: the if-then-else construct is not classified as a primitive function because it is not strict!

Excluding function domains, the data domains supported by most programming languages are flat: 

every element d ∈ D except ⊥ is finite and maximal.  Some examples include integers, booleans, 

strings, structures, arrays of structures, etc.  All conventional data values including finite trees, lists, 

and tables are flat because every conventional data constructor is strict; no embedded elements can 

be ⊥.  Consider some unary total function g on the natural numbers that is not recursive 

(computable).  In domain theory, there is a simple function corresponding to g over the flat domain 

of natural numbers called the natural extension of g where g(⊥) = ⊥.  This function is monotonic and 

continuous but it is not computable. In languages supporting the lazy construction of objects

(structures), the data domains corresponding to lazy constructions are not flat, because each lazy 

argument (subtree) in a construction can be an element of the domain designated for that argument.  

If the argument can be a tree, then infinite trees can be constructed.  Function domains are obviously 

not flat.



More Mathematical Details cont.
• Excluding function domains, the data domains D supported by most 

programming languages are flat: every element d ∈ D except ⊥ is finite and 

maximal.  Some examples include integers, booleans, strings, structures, 

arrays of structures, etc.  All conventional data values including finite trees, 

lists, and tables are flat because every conventional data constructor is strict;

no embedded elements can be ⊥. 
• Function domains are obviously not flat since approximation is defined point-

wise on functions and functions can diverge on converge on particular inputs.

• Consider some unary total function g on the natural numbers that is not

recursive (computable).  In domain theory, there is a simple function

corresponding to g over the flat domain of natural numbers called the natural

extension g' of g where g'(⊥) = ⊥.  This function is monotonic and continuous

but it is not computable. 

• In languages supporting the lazy construction of objects (structures), the data 

domains corresponding to lazy constructions are not flat, because each lazy 

argument (subtree) in a construction can be an element of the domain 

designated for that argument.  If the argument can be a tree, then infinite trees 

can be constructed.  



Some Domain Examples
• Flat domains like N, Z, arrays of flat domains.

• Strict function spaces (A► B) on flat domains A and B.  Note: the notation ► is 

non-standard; more typically some form of modified right arrow is used.

• Strict function spaces (A► B) mapping a domain A into domain B.

• Non-strict function spaces (call-by-name!) D→ D and (D→ D)⊥.

The non-strict functions in Jam (as we implement call-by-name) do not form 

the simple space D→ D, but rather (D→ D)⊥ which adds a distinct ⊥ element 

that is not a function!  The reduction semantics required to support D→ D is 

wasteful because it must reduce inside lambda-abstractions because 

• Lazy binary trees of booleans

• Lazy abstract syntax trees (infinite programs!)

• Continuous functions from domain A into domain B, denoted A → B

• What if domain A+ contains A and domain B contains B- ?

• What is relationship between A → B and A+ → B- ? The latter is a subset of the 

former.

• The continuous function domain constructor → is co-variant in its second 

argument (the co-domain) and contra-variant in its first argument (the domain).



A Bigger Challenge

• In an earlier lecture, we posed and solved the minor challenge of how to 

modify our meta-interpreter to support the recursive generalization of 

let, which is particularly interesting if we only consider purely 

functional meta-interpreters.

• Lets reconsider that problem but impose more restrictions on how we are 

allowed to solve it. Assume that we want to write an interpreter for an 

extension of LC (or Jam as in Assignment 2) that includes recursive 

binding (e.g., letrec) that simply expands the input program into an 

equivalent program that eliminates all uses of letrec. We are not 

allowed to modify our interpreter for the original (unextended) language 

without a recursive binding construct (say functional Scheme without 

define and letrec)?  

• Key problem: we must expand code with letrec as a binding construct 

into equivalent code that only has lambda available as a binding 

construct.  

• No simple solution to this problem.   We need to devise some syntactic 

magic (as did the creators of the lambda-calculs or develop some 

sophisticated mathematical machinery (as did Dana Scott).


