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Machine-level  Semantics

Interpreters written in a clean functional metalanguage (like 
functional Scheme or Haskell) provide clear definitions of 
meaning for programming languages.  We can even tolerate 
occasional use of imperative features (e.g., mutation operations on 
shared data in Scheme) and still claim that interpreters clearly 
define the behavior of programs (provided we define the semantics 
of the imperative extension of metalanguage).

But these interpreters do not describe how to implement 
programming languages efficiently in terms of conventional 
machine instructions.  What is missing?  A description of the 
meaning of function calls and error operations used in the 
interpreter metalanguage.  Primitive functions (e.g., addition of 2's 
complement integers) are implemented by machine instructions or 
short sequences of machine instructions.  In principle, we would 
like to know how to hand translate our interpreters to machine 
code, or even better, how to compile source programs directly into 
machine code.



Guidance From an Example

Consider the following Jam procedure, which computes the product of a list of 
numbers:

let Pi := map l to

if l = null then 1 else first(l)*Pi(rest(l))

in Pi(...)

What if the input list may be corrupt (contain non-numbers)?  How can Pi report 
an error?

let

PiAcc := map l,acc to

if l = null then acc

else PiAcc(rest(l), first(l)*acc);

Pi2 := map l to PiAcc(l, 1);

in Pi2(...)

Does Pi2 preserve the order of evaluation in Pi?



Guidance From an Example cont.

Suppose Pi2 is passed a corrupt list. In that case, PiAcc multiplies all 

the numbers found until the erroneous input is encountered. Can we 

avoid these wasted multiplications?  Yes.  By making acc into a 

suspension (thunk), which requires wrapping acc in a function with 

a dummy parameter ?.

let PiLAcc := map l,lacc to

if null?(l) then lacc(true)

else if number?(first(l)) then

PiLAcc(rest(l), map ? to first(l)*lacc(true))

else first(l)  // return the rogue element;

Pi3 := map l to PiLAcc(l, map ? to 1)

This program avoids unnecessary multiplications.  But like  Pi2, it 

changes the order of multiplications from Pi.  If the * primitive were 

not associative, the transformation used to create Pi2 would not 

work.



Systematically Avoiding Nested Function Calls

We failed to preserve the evaluation order in Pi in constructing Pi2 and Pi3

because updating an accumulator  reverses the order of operations on a list.  Is 

there a systematic way to avoid nesting function calls while preserving evaluation 

order?  Yes!  It is called transformation to continuation-passing style (CPS).  The 

CPS transform of Pi is:

let Pik := map l,k to  //function k performs the rest of the computation

if null?(l) then k(1)

else if number?(first(l)) then 

Pik(rest(l), map prod to k(first(l)*prod))

else first(l); // abort on an illegal input

Pi4 := map l to Pik(l, map x to x)

Why does the first else clause work? Because Pi4 and Pk are tail-recursive. P4 is 

only called at top-level; it tail-calls the tail-recursive function Pik.  Hence, the 

value returned by an else clause is guaranteed to return directly to the top-level 

caller of Pi4.  CPS converts all functions to tail-call-form (every call on a 

program-defined function can only appear as the last function call or operation in 

the execution of the function body).  A CPSed program can be executed without the 

support of a call stack!  All subroutine call operations become jumps.  Argument

values can be passed in a fixed block of registers (limiting arity to block size). 



The CPS Transformation

A primitive expression is constructed from constants, variables, operators and primitive functions.   Assume Jam 
programs are restricted to a form where let only appears at the top-level and the body of a function is either :

• an ordinary expression, which has the same definition as a primitive expression except that may contain calls on 

program-defined functions; or

• a conditional expression if-then-else chain) where the predicates are primitive expressions and the result 
clauses are ordinary expressions (primitive expressions augmented by program-defined functions).  

Then the CPS transformation of such a program is defined as follows:

1. Add an extra parameter k to every function definition map.

2. For each function body b that is a primitive expression, write k(b).

3. For each function body that is a conditional expression, each predicate (test expression) is unchanged and each

result clause is treated separately as follows:

a. for each result clause b composed from primitive operations and constants, write  k(b).

b. for each clause (which we call body) containing calls on program-defined functions, pick the call that will 

be evaluated first. Make the body for the new clause a call that takes an extra argument, which is of the 

form map res to body.  The original contents of that clause are placed in the body, enclosed in a call on 

the continuation k, with the selected recursive call replaced by res. Repeat this step (3b) until no 

unconverted function calls, including continuations, remain.

A continuation corresponds to a reification (packaging some program behavior as a function) performing 
the rest of the computation as described by the control stack (in an Algol-style runtime) The top-level let
creates an activation record and each function call creates a new activation.

The generated continuation functions have the same restricted form as the original program.

4. For each function body that is an ordinary expression (but not a primitive expression), convert it to CPS form 

using the process described in 3b) above.



Another Example

Assume that Jam includes binary trees with int leaves (the BT type 

from Lecture ??).  Then:

let treePi := map t to

if leaf?(t) then t

else treePi(left(t))*treePi(right(t))

In the first iteration in creating the CPS version is:

let treePik := 

map t,k to

if leaf?(t) then k(t)

else treePik(left(t), map res to k(res*treePi(right(t)))

The preceding program in not in tail-call-form because the 

continuation function in the recursive call on treePik is not in tail-

call-form.  In addition is still contains a call on treePi



Second Iteration

After the first iteration, the generated continuation (which is a program map) is not

in tail-call-form, so we must transform it as well.

let tree-Pi-k := 

map t,k to

if leaf?(t) then k(t)

else tree-Pi-k(left(t), 

map r1 to tree-Pi-k(right(t),

map r2 to k(r1*r2))

which is in tail-call-form.



CPS Granularity
In pure form, the CPS transformation is typically given for the untyped λ-

calculus (see the optional notes on the CPS Transformation in OCaml).  But 

this characterization (like most formalisms based on the untyped λ-calculus) is 

misleading in practice because it does not address the issue of processing 

primitive operations (the untyped λ-calculus has no primitive operations!).  

Neither does the polymorphic λ-calculus (System F).

Of course, primitive operations are much easier to process than program 

functions because they typically do not abort (a few operations like division 

and object accessors are exceptions) or otherwise discard the pending 

continuation.  Modular 2’s complement arithmetic (other than division) is a 

good example.  

But primitive operations can be treated like program functions provided the 

libraries implementing are re-shaped so that every such operation takes an 

extra continuation argument.  The designation of which operations are 

primitive has a huge impact on the final form of the CPSed code.   If primitive 

operations are CPSed, then the CPSed code is much more complex.  In 

practice, CPSing primitives is generally not advisable since CPSing adds 

overhead (extra function arguments and extra function calls) and we typically 

only need to CPS the operations that correspond to subroutine calls.



CPSing Within Compilers

The CPS transformation is often performed by compilers for “higher -

order” languages (those that support functions as data values), because 

CPSing exposes all of the operations that are implicitly performed on 

the stack in standard code (which uses an algol-like stack run-time).

But there are less severe alternative transformations (notably A-normal 

form) that perform much the same function. In A-normal form, every 

non-trivial intermediate result is explicitly stored in a local variable.   

An application is trivial iff the rator is a primitive operation.

If no operation is treated as primitive, then A-normal form conversion 

is very similar to a much older representation used in optimizing 

compilers called value-numbering. In value-numbering, hashing is 

used to avoid duplicating subtrees in a concrete representation of the 

abstract syntax of a program.



Reviewing the CPS Transformation

Assume Jam/Scheme programs are restricted to a form where the body of a function is 

either:

• a primitive expression constructed from constants, variables, operators, and primitive 

functions,  and program-defined functions; or

• a conditional where the predicates are primitive expressions and the result clauses are 

ordinary expressions (primitive expressions augmented by program-defined functions). 

Then the CPS transformation of such a program is defined as follows:

1.  Add an extra parameter k to every function.

2.  For each function body b that is a primitive expression, write k(b).

3.  Each clause in a conditional is treated separately:

a. For each result clause b composed from primitive operations and constants, write 

k(b).

b. For each clause containing calls on program-defined functions, pick the call that will be 

evaluated first. Make the body of the new clause a call on a reshaped version of the 

program-defined function that takes an extra argument of the form map res to body, 

called the continuation. The original contents of that clause are placed in the body, 

enclosed in a call on the continuation k, with the selected call replaced by res.

c. Repeat preceding step 3(b) until no unconverted function calls remain.



Review:  Another Example

let
treeSum :=
map t to if leaf?(t) then t

else Tree-Sum(left(t)) + Tree-Sum(right(t))
In treeSum( ... )

Then first iteration in creating the CPS version, treeSumK, is

let 
treeSumK :=
map t,k to if leaf?(t) then k(t)

else treeSumK(left(t), 
map res to k(res + treeSum(right(t)))

in treeSumK( ... , map x to x)



Second Iteration

let

treeSumK := map t,k to     // rule 1

if leaf?(t) k(t)           // rule 3a

else treeSumK(left(t), // rule 3b

map r1 to treeSumK(right(t),

map r2 to k(r1 + r2)))

in treeSumK( ...,  map x to x)



Comprehensive Formulations of the CPS 
Transformation

The rules for performing the CPS transformation are more complex in the 

context of explicit binding constructs like lambda, let, and letrec

(recursive let).   In principle, these extensions do not add anything new, but 

they complicate the detailed structure of environments and the CPS 

transformations eliminates explicit environments (other than local variables) by 

encoding environments (represented using the stack in algol-like run-times) as 

closures (continuations) in the heap.

Study the rules for Assignment 6, which constitute one possible way to handle 

the Jam recursive let and map constructs.  Good CPS translations are concise.   

The rules for Assignment 6 produce reasonably concise CPS translations but 

they could be improved at the cost of more complexity.


