
Comp 411

Principles of Programming Languages

Lecture 25

Exposing the Low-Level Meaning of

Function Calls Via the CPS Transformation

Corky Cartwright

March 30, 2020

Machine-level Semantics

Interpreters written in a clean functional metalanguage (like
functional Scheme or Haskell) provide clear definitions of
meaning for programming languages. We can even tolerate
occasional use of imperative features (e.g., mutation operations on
shared data in Scheme) and still claim that interpreters clearly
define the behavior of programs (provided we define the semantics
of the imperative extension of metalanguage).

But these interpreters do not describe how to implement
programming languages efficiently in terms of conventional
machine instructions. What is missing? A description of the
meaning of function calls and error operations used in the
interpreter metalanguage. Primitive functions (e.g., addition of 2's
complement integers) are implemented by machine instructions or
short sequences of machine instructions. In principle, we would
like to know how to hand translate our interpreters to machine
code, or even better, how to compile source programs directly into
machine code.

Guidance From an Example

Consider the following Jam procedure, which computes the product of a list of
numbers:

let Pi := map l to

if l = null then 1 else first(l)*Pi(rest(l))

in Pi(...)

What if the input list may be corrupt (contain non-numbers)? How can Pi report
an error?

let

PiAcc := map l,acc to

if l = null then acc

else PiAcc(rest(l), first(l)*acc);

Pi2 := map l to PiAcc(l, 1);

in Pi2(...)

Does Pi2 preserve the order of evaluation in Pi?

Guidance From an Example cont.

Suppose Pi2 is passed a corrupt list. In that case, PiAcc multiplies all

the numbers found until the erroneous input is encountered. Can we

avoid these wasted multiplications? Yes. By making acc into a

suspension (thunk), which requires wrapping acc in a function with

a dummy parameter ?.

let PiLAcc := map l,lacc to

if null?(l) then lacc(true)

else if number?(first(l)) then

PiLAcc(rest(l), map ? to first(l)*lacc(true))

else first(l) // return the rogue element;

Pi3 := map l to PiLAcc(l, map ? to 1)

This program avoids unnecessary multiplications. But like Pi2, it

changes the order of multiplications from Pi. If the * primitive were

not associative, the transformation used to create Pi2 would not

work.

Systematically Avoiding Nested Function Calls

We failed to preserve the evaluation order in Pi in constructing Pi2 and Pi3

because updating an accumulator reverses the order of operations on a list. Is

there a systematic way to avoid nesting function calls while preserving evaluation

order? Yes! It is called transformation to continuation-passing style (CPS). The

CPS transform of Pi is:

let Pik := map l,k to //function k performs the rest of the computation

if null?(l) then k(1)

else if number?(first(l)) then

Pik(rest(l), map prod to k(first(l)*prod))

else first(l); // abort on an illegal input

Pi4 := map l to Pik(l, map x to x)

Why does the first else clause work? Because Pi4 and Pk are tail-recursive. P4 is

only called at top-level; it tail-calls the tail-recursive function Pik. Hence, the

value returned by an else clause is guaranteed to return directly to the top-level

caller of Pi4. CPS converts all functions to tail-call-form (every call on a

program-defined function can only appear as the last function call or operation in

the execution of the function body). A CPSed program can be executed without the

support of a call stack! All subroutine call operations become jumps. Argument

values can be passed in a fixed block of registers (limiting arity to block size).

The CPS Transformation

A primitive expression is constructed from constants, variables, operators and primitive functions. Assume Jam
programs are restricted to a form where let only appears at the top-level and the body of a function is either :

• an ordinary expression, which has the same definition as a primitive expression except that may contain calls on

program-defined functions; or

• a conditional expression if-then-else chain) where the predicates are primitive expressions and the result
clauses are ordinary expressions (primitive expressions augmented by program-defined functions).

Then the CPS transformation of such a program is defined as follows:

1. Add an extra parameter k to every function definition map.

2. For each function body b that is a primitive expression, write k(b).

3. For each function body that is a conditional expression, each predicate (test expression) is unchanged and each

result clause is treated separately as follows:

a. for each result clause b composed from primitive operations and constants, write k(b).

b. for each clause (which we call body) containing calls on program-defined functions, pick the call that will

be evaluated first. Make the body for the new clause a call that takes an extra argument, which is of the

form map res to body. The original contents of that clause are placed in the body, enclosed in a call on

the continuation k, with the selected recursive call replaced by res. Repeat this step (3b) until no

unconverted function calls, including continuations, remain.

A continuation corresponds to a reification (packaging some program behavior as a function) performing
the rest of the computation as described by the control stack (in an Algol-style runtime) The top-level let
creates an activation record and each function call creates a new activation.

The generated continuation functions have the same restricted form as the original program.

4. For each function body that is an ordinary expression (but not a primitive expression), convert it to CPS form

using the process described in 3b) above.

Another Example

Assume that Jam includes binary trees with int leaves (the BT type

from Lecture ??). Then:

let treePi := map t to

if leaf?(t) then t

else treePi(left(t))*treePi(right(t))

In the first iteration in creating the CPS version is:

let treePik :=

map t,k to

if leaf?(t) then k(t)

else treePik(left(t), map res to k(res*treePi(right(t)))

The preceding program in not in tail-call-form because the

continuation function in the recursive call on treePik is not in tail-

call-form. In addition is still contains a call on treePi

Second Iteration

After the first iteration, the generated continuation (which is a program map) is not

in tail-call-form, so we must transform it as well.

let tree-Pi-k :=

map t,k to

if leaf?(t) then k(t)

else tree-Pi-k(left(t),

map r1 to tree-Pi-k(right(t),

map r2 to k(r1*r2))

which is in tail-call-form.

CPS Granularity
In pure form, the CPS transformation is typically given for the untyped λ-

calculus (see the optional notes on the CPS Transformation in OCaml). But

this characterization (like most formalisms based on the untyped λ-calculus) is

misleading in practice because it does not address the issue of processing

primitive operations (the untyped λ-calculus has no primitive operations!).

Neither does the polymorphic λ-calculus (System F).

Of course, primitive operations are much easier to process than program

functions because they typically do not abort (a few operations like division

and object accessors are exceptions) or otherwise discard the pending

continuation. Modular 2’s complement arithmetic (other than division) is a

good example.

But primitive operations can be treated like program functions provided the

libraries implementing are re-shaped so that every such operation takes an

extra continuation argument. The designation of which operations are

primitive has a huge impact on the final form of the CPSed code. If primitive

operations are CPSed, then the CPSed code is much more complex. In

practice, CPSing primitives is generally not advisable since CPSing adds

overhead (extra function arguments and extra function calls) and we typically

only need to CPS the operations that correspond to subroutine calls.

CPSing Within Compilers

The CPS transformation is often performed by compilers for “higher -

order” languages (those that support functions as data values), because

CPSing exposes all of the operations that are implicitly performed on

the stack in standard code (which uses an algol-like stack run-time).

But there are less severe alternative transformations (notably A-normal

form) that perform much the same function. In A-normal form, every

non-trivial intermediate result is explicitly stored in a local variable.

An application is trivial iff the rator is a primitive operation.

If no operation is treated as primitive, then A-normal form conversion

is very similar to a much older representation used in optimizing

compilers called value-numbering. In value-numbering, hashing is

used to avoid duplicating subtrees in a concrete representation of the

abstract syntax of a program.

Reviewing the CPS Transformation

Assume Jam/Scheme programs are restricted to a form where the body of a function is

either:

• a primitive expression constructed from constants, variables, operators, and primitive

functions, and program-defined functions; or

• a conditional where the predicates are primitive expressions and the result clauses are

ordinary expressions (primitive expressions augmented by program-defined functions).

Then the CPS transformation of such a program is defined as follows:

1. Add an extra parameter k to every function.

2. For each function body b that is a primitive expression, write k(b).

3. Each clause in a conditional is treated separately:

a. For each result clause b composed from primitive operations and constants, write

k(b).

b. For each clause containing calls on program-defined functions, pick the call that will be

evaluated first. Make the body of the new clause a call on a reshaped version of the

program-defined function that takes an extra argument of the form map res to body,

called the continuation. The original contents of that clause are placed in the body,

enclosed in a call on the continuation k, with the selected call replaced by res.

c. Repeat preceding step 3(b) until no unconverted function calls remain.

Review: Another Example

let
treeSum :=
map t to if leaf?(t) then t

else Tree-Sum(left(t)) + Tree-Sum(right(t))
In treeSum(...)

Then first iteration in creating the CPS version, treeSumK, is

let
treeSumK :=
map t,k to if leaf?(t) then k(t)

else treeSumK(left(t),
map res to k(res + treeSum(right(t)))

in treeSumK(... , map x to x)

Second Iteration

let

treeSumK := map t,k to // rule 1

if leaf?(t) k(t) // rule 3a

else treeSumK(left(t), // rule 3b

map r1 to treeSumK(right(t),

map r2 to k(r1 + r2)))

in treeSumK(..., map x to x)

Comprehensive Formulations of the CPS
Transformation

The rules for performing the CPS transformation are more complex in the

context of explicit binding constructs like lambda, let, and letrec

(recursive let). In principle, these extensions do not add anything new, but

they complicate the detailed structure of environments and the CPS

transformations eliminates explicit environments (other than local variables) by

encoding environments (represented using the stack in algol-like run-times) as

closures (continuations) in the heap.

Study the rules for Assignment 6, which constitute one possible way to handle

the Jam recursive let and map constructs. Good CPS translations are concise.

The rules for Assignment 6 produce reasonably concise CPS translations but

they could be improved at the cost of more complexity.

