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Eliminating the Stack from Language Runtimes

In Assignment 7, we observe that CPSed programs converted to SDAST form can be 
executed without the benefit of an environment stack (or environment list in the heap).  To 
fully realize this claim we need to do some additional program transformation because the 
low-level interpreter in Assignment 7 still creates stacks of environment (activation) 
records to implement (possibly nested) let/letrec constructions, which can occur in 
CPSed code.  We can completely eliminate all of these let/letrec constructions by 
performing some additional program transformations.  

• First, we lift all let/letrec function/procedure bindings to the top-level, using a 
transformation called λ-lifting that program designers often perform during program 
development.  (We assume all variables have been renamed to eliminate shadowing.)

• After performing this transformation, the language implementation (interpreter or 
compiler) can collapse all of the remaining let/letrec constructions (which only 
contain ordinary [non-function] bindings) to a single letrec at the top of each 
enclosing function/procedure or a collection top-level bindings (expressed by define in 
Scheme/Racket) with default RHSs for the program body.  

• Then the top-level letrec constructions within function/procedure definitions can be 
absorbed by the enclosing λ-abstraction as additional parameters with default bindings.  
(The Java compiler performs this absorption process to support all bindings local to a 
method in the activation record for the method.) Similarly, the generated top-level 
program definitions along with all pre-existing top-level program definitions can be 
placed in a “static data area” (historically called the BSS in Unix load modules) to hold 
all top-level program bindings.  This static block of binding cells is fixed for the entire 
program execution.   



Eliminating the Stack from Language Runtimes cont.

After the transformation described in the preceding slides

• All program computation is expressed at the top-level, implying all tail-calls can be 
implemented by jumps.  

• In CPSed code, there is always only one activation record.  Each tail-call overwrites 
the current activation record with the new one—completely eliminating the need for 
a stack of activation records.  But note that we have eliminated the stack at 
significant cost.  The conversion to CPS creates a closure in the heap for every call 
on a program defined function.

This account also hand-waves one important issue.  Do the RHSs of the top level 
program bindings require general computation?  

• If the implemented language specifies a strict (call-by-value) semantics for RHSs, 
such computations are performed by the language translator (interpreter/compiler) 
before the program is actually executed, which may cause the language translation 
process (compilation, interpreter pre-processing) to diverge!  This phenomenon can 
actually happen in DrRacket.  In Racket, the RHS of a top-level definition must 
terminate for compilation to succeed.  Of course, if a RHS is a λ-abstraction, it 
trivially terminates.

• In languages like Haskell where the evaluation of the RHSs of bindings is lazy 
(demand-driven), the language implementation generally creates suspensions 
(thunks) in the heap to defer such computations until demanded.  But, of course, the 
language implementation for such a lazy language can perform some static analysis 
to detect all simple terminating RHSs and perform them at translation time as an 
optimization.



Eliminating the Stack from Language Runtimes

The clerical details of these transformations are conceptually 
straightforward but very messy to write down precisely, so the remainder 
of this lecture will focus on a the specific example: translating a low-level 
interpreter written in Scheme/Racket for a restrictive language mostly 
functional language L similar to Jam into C code.  Given the restrictions 
imposed by L, we can eliminate the need for a heap!  But the restrictions 
are crippling in the context of most real applications.  So we show how to 
eliminate the restrictions on L at the cost of relying on a heap.

If a program does not use closures in interesting ways, namely, it only uses 
lambda-abstractions as rators or as the RHSs of variable definitions, we 
can transform the program to a collection of top-level function definitions 
as in C without introducing heap operations essentially because we never 
need to fetch the value of a variable that is free in a function/procedure 
body.  

This observation should not be surprising since it underlies the Algol 60 
runtime which has no heap.  Of course, Algol supports the use of lexically 
visible free variables in function/procedure bodies by maintaining a stack 
of activation records supporting a restricted form of closure that prevents 
closures (functions) from being first-class values (usable in all of the same 
contexts as conventional machine-level values).



λ-lifting Without Using Heap Operations

Consider a program where all functions (λ-abstractions) with free 
variables are never passed as parameters (a more stringent restriction 
than Algol 60 places on function-passing since it supports “downward” 
closures), never stored in data structures and never returned as values. 
Our restricted language L mandates this constraint. We will use the 
term global functions to refer to such λ-abstractions.  Hence, L 
mandates that all program functions are global.  In a lexically scoped 
programming language (like Jam, Scheme or C), the free variables in 
global functions are always in scope (unless shadowed) at each call site 
where the function is applied since each call site falls within the same 
scope as the function definition.

If we rename all program variables to eliminate shadowing, then we 
can convert each global function definition containing free variables to 
top-level form (expressible as a top level function definition in C) by 
replacing each free variable by an additional parameter.  Of course, we 
must pass the replaced free variables as arguments at each call site, but 
this is straightforward.  The next slide explains the only technical 
complication.



Technical Complication
The technical complication is the fact that a free variable f within a 

function definition F may be bound to another global function G.  

Hence, we must make sure that each such function G is converted to 

top-level form (eliminating its free variables and possibly adding 

more parameters) before we process any function bodies where it is 

passed as an argument in a call (as a top-level function) to the 

globalized version of F.  We can do this by lifting functions in order 

of nesting level (taking into account that the RHSs of the definitions 

in a raw let are not nested within the new scope created by the let) 

outermost first. Within a letrec, all function definitions (which 

may be mutually recursive) are lifted simultaneously.  As a result, a 

function is only lifted when all of the functions to which it refers 

(free variables and added parameter bindings), excluding mutual 

references in a letrec, are defined at top-level or defined within the 

group of binding being lifted.

Once all function definitions have been converted to top-level form, 

we can execute a such a program without performing any heap

operations.



Supporting First-Class Functions

When closures are used in non-trivial ways (passed as parameters, stored 

in data structures, returned as results), then the global function restriction 

is violated.  In the general case, we must allocate data structures (closure 

representations that store the values of the free variables in the closure 

body) on the heap and explicitly pass these data structures to encapsulate 

the free variables in such closures and globalize them. In some special 

cases, we can separately allocate each such variable on the heap and 

directly access it in the function body, but in the general case we must 

create a closure object including the address of the closure code for each 

evaluation of a λ-abstraction and we must invoke this closure object 

instead of calling a conventional (C or machine) function.

Hence, in writing an interpreter in a high-level language that we want to 

map into efficient low-level code, we either (i) eschew the non-trivial use 

of closures or (ii) we accept the fact that we must heap allocate closure 

objects and explicitly invoke these closure objects instead of calling 

conventional functions.  Of course, calling a closure object can be 

implemented as an indirect function call that passes the address of the 

closure object as an extra argument to a general closure dispatch 

procedure.



Expressing Functional Code in C/Machine Language

Functional code contains many λ-abstractions.  They appear either on the right hand 

side of let bindings, as rators in applications, as arguments in function calls, or as the 

bodies of functions/procedures

If we need to express a functional program in C/machine language, we need a simple 

representation for λ-abstractions.  In the simple case when the original program is 

free of non-trivial closures, we can obviously perform λ-lifting as previously 

described, reducing the function to a top-level C-function, which is a pointer value.  

Moreover, we can λ-abstractions that are not global in the λ-lifting process if we 

have a heap to store closure representations and the free variables in non-global 

functions.  After performing λ-lifting, we can collapse nested let/letrec constructions 

to the top of the function/procedure/main-program in which they are enclosed.   At 

this point, all bindings can be absorbed into either the top-level static data area or the 

activation record of the enclosing function.   Finally, we may or may not CPS the 

code.  By CPSing the code we can eliminate the environment stack and expose 

intermediate results otherwise buried in local variables/temporaries in the stack.

How do we represent the λ-abstractions in λ-lifted code in C/machine language 

where there is no static chain?   C is crude in this regard because it is very close to 

the machine. Two choices are shown on the next slide.



Representing λ-Abstractions Without Environment Static 
Chains and (perhaps) Heap-Allocated Closures

• We can use C-style function pointers to represent function values if we make 

each λ-abstraction a top-level function (no free local variables).  Since these 

trivial λ-abstractions cannot contain free variables, no environment is needed 

to represent the corresponding closures; they are simply function pointers.  

All program bindings are either global (at known addresses in the static data 

area) or local to a function.  If the code has been CPSed, then every function 

is invoked by a tail-call, eliminating the need for a control stack (assuming 

the λ-lifting transformations described earlier in this lecture).  If our language 

runtime includes a heap, we can support functions that are not global by 

heap-allocating the free variables appearing in non-global λ-abstractions. 

Since these variables are simply heap locations, we still do not need a static 

chain.  Supporting a memory-safe heap (no dangling pointers) requires heap 

storage management in the form of reference-counting or conservative/exact 

garbage collection.  If our language implementation is a compiler generating 

machine code, it can support “exact” garbage collector by performing the 

detailed bookkeeping necessary to determine which memory cells contain 

pointers.

• Perform closure elimination, a hack which we explain on the next slide.  This 

option is more expensive (even with tail-call optimization) but does not 

require explicit function pointers (the preferred representation IMO).



• Convert the local variable references in each λ-abstraction to references to an 

arguments array.

• Associate ascending integer indices 0, 1, … with λ-abstractions and embed all of 

them in a single case (switch) statement.  This case statement can be either (i) the 

body of a huge binary tail-calling procedure that switches on its argument or (ii) 

part of the main program.  (In the main program version, the case statement can be 

replaced by explicit labels and function invocation by goto's.)

• Applications of λ-abstractions simply call the huge procedure with the index 

corresponding to the λ-abstraction and the arguments array for the call.  If the code 

has been CPSed, the arguments array is stored in the current (and only) activation 

record that is re-used in each function call.  A function call simply initializes the 

arguments array to the appropriate contents and jumps to the appropriate λ-body.

• Note that this scheme works for general closures where closure representations are 

allocated on the heap.  Each closure representation (encapsulating the bindings of 

the free variables in the λ-body) must include the index or address of the 

corresponding block of code as well as the binding of the free variables (which may 

be pointers into the heap).

• This approach assumes the heap incorporates some form of garbage-collection.

Note that this representation is a C-language hack.  If the implementation is expressed 

in machine code (the norm for compiled code), ordinary pointers are simpler and more 

efficient.

Closure Elimination


