
Comp 411

Principles of Programming Languages

Lecture 4

The Scope of Variables

Corky Cartwright

January 29, 2021

Variables

• What is a variable?

A legal symbol without a pre-defined (reserved) meaning that can be bound to a
value (and perhaps rebound to a different value) during program execution.

• Examples in Scheme/Java

x y z

• Non-examples in Java

+ null true false 7f throw new if else

• Complication in Java: variables vs. fields

• What happens when the same name is used for more than one
variable?

• Example in Scheme:

(lambda (x) (x (lambda (x) x)))

We use scoping rules to distinguish them.

Some scoping examples

• Java:
class Foo {

static void sampleMethod() {

int[] a = ...;

for (int i = 0; i < a.length; i++) { ... }

...

// <Is a in scope here? Is i in scope here?

...

}

}

What is the scope (part of the program
where it can be accessed/referenced) of a?

What is the scope of i?

Formalizing Scope Using LC

• Let us focus on a pedagogic functional language that we will call LC.
LC (based on the Lambda Calculus) is the language generated by the
root symbol Exp in the following grammar

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp) | (+ Exp Exp)

where Var is the set of alphanumeric identifiers excluding lambda and Num is
the set of integers written in conventional decimal radix notation. (LC is very
restrictive; there are no operators on integers other than +. Later in the course,
we will slightly expand it.)

• If we interpret LC as a sub-language of Scheme, it contains only one

binding construct: lambda abstractions. In (lambda (a-var) an-exp)

Scheme encloses the parameter list in parentheses but otherwise

conforms to the syntax we have used for LC.

• a-var is introduced as a new, unique variable whose scope is the body

an-exp of the lambda-expression (with the exception of possible

"holes", which we describe in a moment).

Abstract Syntax of LC

• Recall that

Exp ::= Num | Var | (Exp Exp) | (lambda Var Exp) | (+ Exp Exp)

where

Num is the set of numeric constants (given in a lexer spec)

Var is the set of variable names (given in a lexer spec)

• To represent this syntax as trees (abstract syntax) in Scheme, we define

; exp := (make-num number) + (make-var symbol) + (make-app exp exp) +

; (make-proc symbol exp) + (make-add exp exp)

(define-struct num (n)) ;; n is a Scheme number

(define-struct var (s)) ;; s is a Scheme symbol

(define-struct app (rator rand))

(define-struct proc (param body)) ;; param is a symbol not a var!

(define-struct add (left right))

• Where

app represents a function application

proc represents a function definition (lambda expression)

add represents an application of addition to two arguments

Free and Bound Occurrences
• An important building block in characterizing the scope of variables is defining when a

variable x occurs free in an expression. For LC, this notion is easy to define inductively.

• Definition (free occurrence of a variable in LC):
Let x, y range over the elements of Var. Let M, N range over the elements of Exp. Then x
occurs free in:

• y if x = y;

• (lambda y M) if x != y and x occurs free in M

• (M N) if it occurs free either in M or in N.

• The relation ``x occurs free in y '' is the least relation on LC expressions satisfying the
preceding constraints. Note that no variable x occurs free in a number.

• The variable name immediately following (“introduced by”) a lambda is not considered a

conventional “occurrence” of the variable and is not classified as either free or not free. It is

usually called a binding occurrence of a variable.

• It is straightforward but tedious to define when a particular occurrence (excluding binding

occurrences) of a variable x (identified by a path of tree selectors) is free or not free; the

definition proceeds along similar lines to the definition of occurs free given above.

• Definition: an occurrence of x is bound in M iff it is not free in M and it is not a binding

occurrence (which is neither bound nor free).

Examples of Free and Bound Occurrences

• Consider the LC expression M = (lambda y (y x)).

• The first occurrence of y in M is a binding occurrence.

• The second occurrence of y in M is bound by the binding occurrence.

• The variable x occurs free in M ; the only occurrence of x in M is free.

• The variable y occurs free in (y x); so does the variable x.

Nested Scope
• A lambda-expression of the form (lambda Var Exp) is

called a lambda abstraction.
• The expression Exp forming the body of a lambda abstraction can

contain lambda abstractions. For example, the lambda abstraction
(lambda y (lambda x y)) defines a function that takes an input y
and returns the constant function that always returns y.

• The inner lambda abstraction (lambda x y) introduces a binding
occurrence of the variable x. In LC, the scope a variable introduced
in a lambda abstraction is simply the body of the lambda
abstraction. The choice of the variable name x is almost arbitrary.
We could use z or v instead. Of course, we would have to change
the name of all free occurrences of x in the body to the new
variable name. Nevertheless, we could use any variable name
instead of x except y. Why? If we use y as the name of the variable
introduced by the inner lambda abstraction, we would shadow the
variable of the same name introduced by the outer lambda
abstraction. No matter what name we choose for the variable
introduced by the inner lambda abstraction, that variable hides any
variable with the same name in an enclosing lambda abstraction.

Nested Scope cont.

• At any point in an LC program, a finite collection of variables—
introduced in enclosing lambda abstractions—is visible. This
collection is always finite because all programs are finite in size.

• If we try to access a variable that has not been introduced in an
enclosing lambda abstraction, then the attempted access will
generate a runtime error. It is easy to detect such references
because they are precisely the free variables of the whole
program.

• Think about how you could write a Java program (which could
be purely functional [no mutation of fields or variables]) to
return a list of the variables that appear free in an LC program
fed as input to the Java program. If we control the content of an
entire LC program, we can make sure that all variable names are
unique, avoiding all shadowing.

• In practice, we typically do not have control over all of the code
in a program, particularly code that may be revised in the future,
so shadowing happens.

Static Distance Representation

• The choice of variable names introduced in a lambda expression is arbitrary
(modulo ensuring distinct, potentially conflicting variables have distinct names).

• We can completely eliminate explicit variable names by using the notion of
“relative addressing” (widely used in machine language and assembly language):
a variable reference simply identifies which lambda abstraction introduces the
variable to which it refers. We can number the lambda abstractions enclosing a
variable occurrence 1, 2, ... (from the inside out) and simply use these indices
instead of variable names. Since LC includes integer constants, we will italicize
the indices referring to variables to distinguish them from integer constants.

• These indices are often called deBruijn indices.

• The numbering of deBruijn indices may start at 0 instead of 1; it a design choice
in defining a deBruijn notation system.

• Examples:

(lambda x x) → (lambda 1)

(lambda x (lambda y (lambda z ((x z)(y z))))) →

(lambda (lambda (lambda ((3 1)(2 1)))))

Generalized Static Distance

• In LC, lambda abstractions are unary; only one
variable appears in the parameter list.

• In practical programming languages, parameter
lists can contain any finite number (within
reason) of parameters.

• How can we generalize deBruijn notation to
accommodate lambda abstractions of arbitrary
arity?

• Hint: does a variable reference have to be a
simple scalar (physics terminology)? Lists and
vectors are not scalars.

Generalized SD Example

(lambda (x y) (lambda (z) ((x z)(y z)))) →
(lambda (lambda (([2 1] [1 1])([2 2] [1 1]))))

Note that we are indexing the variables within a given
parameter list starting at 1, not 0. In the context of
intermediate representations used for compilation,
indexing typically starts at 0 (because the
corresponding addressing arithmetic uses an offset of
0).

