
The Syntactic Semantics of Core Jam Programs

Corky Cartwright

Spring 2021

1 Notational Conventions

Italicized meta-variables will be used to stand for pieces of syntax within Racket programs as follows:

• E, E1, E2, . . . are expressions.

• V , V1, V2, . . . are values.

• Lower-case letters like f , g, h, n, s, t, u, v, x, y, z potentially augmented by numerical
subscripts stand for variables. They are sometimes called “names”. Some examples of such
meta-variables are f1, g2, h, n5.

• N is a non-negative integer.

A sequence of items like E1, . . .EN indexed by consecutive integers beginning with 1, is empty if N
is 0.

We will typically use the (possibly subscripted) meta-variables f , g, and h to refer to variables
that are bound to functions and the meta-variables u, v, x, y, z to stand for variables that are bound
to data values that are not functions. Sometimes we need meta-variables to refer to variables that
can be bound to either functions or non-functions. We will try to mention when this situation can
arise.

2 Core Jam Dialects

The syntax of Core Jam is rigorously defined in Assignment 3, but Assignment 3 includes the option
of call-by-name/call-by-need semantics for let bindings which we exclude in Core Jam for the sake of
simplicity.1 For the sake of simplicity in hand evaluation (which is already clerically tedious), we will
only use call-by-value binding in let constructions in Core Jam. On the other hand, will distinguish
call-by-value and call-by-name interpretations for applications of maps and eager and lazy versions
of cons. Restricting our interpretation of let to call-by-value binding reduces the total number of
syntactic reduction rules for Core Jam,

We will only consider the syntactic evaluation of Jam programs, which are Jam expressions
with no free variables. Nevertheless, our evaluation rules work for Jam expressions containing free
variables if we simply add a rule that the evaluation of an unbound variable aborts with an error.

1Note that Assignment 4 introduces mutation distinguishing the meaning of call-by-name from call-by-need, but
they are semantically equivalent in Assignment 3.

1



In Core Jam, the semantics for let is recursive. Hence, we do not identify let constructions
with expansions into map applications. They have different semantics because let is recursive. As
a result, we need separate reduction rules for let constructions.

All of our interesting hand evaluations involve programs where (i) the outermost construction
is a let that introduces a collection of function definitions and (ii) the body is some expression
that performs a computation using those defined functions. In other words, an interesting Core Jam
program has the form

let f1 := E1; ... fN := EN; in E

where E1, ..., EN , E are Core Jam expressions. Note that the variables fi can be bound to either
functions or non-functions but will typically be bound to functions.

By distinguishing let constructions from the corresponding application of maps (required to sup-
port explicit recursion), we implicitly create what is effectively an environment of program function
bindings accumulated as the the evaluated bindings of variables introduced in let constructions

3 Expression Evaluation

Evaluating a Core Jam expression means finding a value for that expression. We use a step-by-step
process to repeatedly simplify an expression until it is so simple that it is a value. Evaluating—/ a
program means repeatedly evaluating the leftmost reducible sub-expression (any expression within
the program) assuming there is no irreducible (also called “stuck”) sub-expression preceding it. If
there is a “stuck” sub-expression to the left of all reducible sub-expressions (a set which may be
empty) in the expression being evaluated, the computation aborts because the stuck state prevents
the expression from being reduced to a value. The evaluation process always operates on the leftmost
reducible expression or stuck state.

3.1 The Reduction Laws

A law of the form

P −→ Q

where P and Q are program fragments (expressions or sequences of expressions) means that P and
Q have the same behavior; one can be substituted for the other without changing the meaning of
the program. Hence, −→ means exactly what it means in high school algebra. In addition, every
law

P −→ Q

has the property that Q is “closer” to a value (assuming one exists) than P .

3.2 Stuck Expressions

Some syntactically well-formed expressions — such as a + 2, first(empty), 1(2), 1/0, etc.— do
not have a value according to these rules because there is no reduction law that matches such an
expression. We say that evaluation of such expressions “sticks”, which is a very simple, but perhaps
crude approach to formalizing the notion of a run-time error.

2



3.3 Values are values, are values, . . .

Values are the answers produced by computations. Every value is also an expression, but no evalu-
ation is required (or possible!). In Core Jam, the only values are: numbers, boolean constants, lists,
and maps. Every map is a value.

Some examples:

Value Kind of Value

0 number

-7 number

true boolean

false boolean

empty list

cons binary primitive function value

cons? unary primitive function value

= binary primitive function value written in infix notation

cons(1,empty) list

map x to x + y program-defined function

3.4 Infix abbreviations

The infix and prefix operators in Assignment 3 Jam are simply abbreviations for binary and unary
function applications, respectively. Infix notation is a familiar convenience from mathematics that
we often exploit in programming languages. (Lisp-like languages eschew these abbreviations because
it complicates the process of syntactic transformation which is much simpler in Lisp-like languages
because the concrete syntax is essentially abstract syntax.) Some examples of Jam infix notation
are 7 + 5, 7 > 5, -7, and empty = cons(1, empty).

3.5 Conditionals

3.5.1 The Laws of if

When the test of a Jam if expression is a value, the next step depends on whether the value is true
or false. (If any other value appears in the test position for an if expression, that expression is a
“stuck state”.)

if true then E1 else E2 −→ E1

if false then E1 else E2 −→ E2

Note that if the test expression is a value V other than true or false, the if expression is a ”stuck”
state (an aborting error when in leftmost reducible position).

Here are some examples:

if 10 > 12 then 7 + 8 else 6 * 4 −→ if false then 7 + 8 else 6 * 4
if 12 > 10 then 7 + 8 else 6 * 4 −→ if true then 7 + 8 else 6 * 4

3



if true then 7 + 8) else 6 * 4 −→ 7 + 8

if 12 then 7 + 8 else 6 * 4 is a stuck state

3.5.2 The Laws of | and &

Let E be an arbitrary expression, B be an arbitrary boolean value, and W is an value that is not a
boolean. Then

true | E −→ true

false | B −→ B
false | W is a stuck state
false & E −→ false

true & B −→ B
true & W is a stuck state

3.6 The Laws of Application

Given an application consisting of values

V1 (V2, . . ., VN)

we apply different laws depending on whether the head value V1 is a primitive function or a a map.
If the head value is not a function (primitive function or a map), the application is “stuck”. Some
“stuck” expressions of this form are 1(2), 1(), and cons(1, empty)(empty). Recall that prefix
and infix expressions are simply abbreviations for corresponding unary and binary primitive function
applications.

3.6.1 Primitive applications

There is a large table of laws for directly reducing (to a value) the application of a primitive to a
sequence of values. You know most of these rules from grammar school; the remainder are described
(implicitly) in the course lecture notes. In addition, you should be familiar with all of the primitive
functions in Core Jam because you implemented them in Assignment 3. If you are uncertain about
a result in the table, you can use the reference interpreter to evaluate it, providing the answer.

For instance, given that U, U1, . . . , Un are values, V is a list value, and W is a non-list value, then:

first(cons(U,V)) −→ U

rest(cons(U,V)) −→ V

cons?(cons(U,V)) −→ true

cons?(W) −→ false

Examples:

first(cons(1,empty)) −→ 1

rest(cons(1,empty)) −→ empty

cons?(1) −→ false

4



cons?(cons(1,empty)) −→ true

1 + 2) −→ 3

If a primitive operation is applied to illegal inputs, then the primitive application is “stuck”.
Some sticking expressions are (first empty), (rest 1), and (+ empty 2).

3.6.2 map Applications

There are two plausible semantics for the applications of map dubbed call-by-value and call-by-name.
The former is much more common, so we will explicate it first.

Call-by-value law for map applications If the head value in an application is a map expression

map x1, . . ., xN to E

where x1, . . ., xN , (N ≥ 0) are variable names and E is an expression, then the following rule
specifies the next step in the call-by-value evaluation of the application:

(map x1,. . .,xN to E) (V1,. . .,VN ) −→ E[V1 for x1]. . .[VN for xN ]

where the notation E[V for x] means E with all free occurrences2 of x safely replaced by V.

Note: locally bound variables in E (introduced in either let or map constructions) must be
renamed if they clash with free variables in V1, . . . , VN . This anomaly is called capturing free variables
and it is the bane of existence for logicians and programming language theorists. Fortunately, in the
syntactic evaluation of Core Jam programs, we can prove that capture cannot happen. Hence, the
qualification provided here is technically unnecessary. It is included here as a reminder that capture
is a endemic problem in thed formalization of logics and programming languages.

Examples:

(map x to x + x) (7) −→ (+ 7 7)

(map f to map x to f(f(x))) (map y to 1 + y))

6= map x to (map y to 1 + y) ((map y to 1 + y) x)))

((map (f) (lambda (x) (f (f x)))) (lambda (y) (+ x y)))

−→ (lambda (z) ((lambda (y) (+ x y)) ((lambda (y) (+ x y)) z)))

Call-by-name law for map applications If the head value in an application is a map expression

map x1, . . ., xN to E

where x1, . . ., xN , (N ≥ 0) are variable names and E is an expression, then the following rule
specifies the next step in the call-by-name evaluation of the application:.

(map x1,. . .,xN to E) (E1,. . .,EN ) −→ E[E1 for x1]. . .[EN for xN ]

2An occurrence of a variable is a binding occurrence if it appears as the variable defined in a Jam let construct or
a parameter in a map. A ”use” occurrence of a variable is free within a particular program fragment P (expression or
whole program) iff it not enclosed by a binding occurrence of the same variable name in P .

5



where the notation E[Ei for xi] means E with all free occurrences of xi safely replaced by Ei.

Note the similarity between these two rules (which are called call-by-value beta-reduction and
call-by-name beta reduction); the only different is that the call-by-value rule is not applicable unless
the argument expressions E1, ..., EN are values. The sample evaluation in the accompanying exer-
cises, show how important this distinction is the definition of some simple functions like short-circuit
”and” and ”or” operations.

3.7 The Law for Evaluating the Bodies of let Constructions

The preceding section gives laws for evaluating Core Jam expressions in the absence of let construc-
tions. But nearly all interesting Jam programs have the form b where n1, n2, . . ., nN are names
and E1, E2, . . ., EN , E are expressions using Jam primitives and the defined names n1, n2, . . ., nN .
The expression E is called the body of the let construction and each expression Ek is called the
body of the binding nk := Ek;.

If the binding bodies Ek are all values

let n1 := V1;

n2 := V2;

. . .

nN := VN ;

in E

then we evaluate the expression E as described above with the added provision that the names
n1, n2, . . ., nN have values V1, V2, . . ., VN , respectively. This situation already prevails if all let
constructs bind variables to functions denoted by map constructions. Hence, the only let bindings
where the bodies (right-hand sides) require evaluation are those that bind variables to expressions
that are not functions.

6


