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Abstract

We call a garbage collector conservative if it has only
partial information about the location of pointers, and
is thus forced to treat arbitrary bit patterns as though
they might be pointers, in at least some cases. We show
that some very inexpensive, but previously unused tech-
niques can have dramatic impact on the effectiveness
of conservative garbage collectors in reclaiming mem-
ory. Our most significant observation is that static data
that appears to point to the heap should not result in
misidentified references to the heap. The garbage collec-
tor has enough information to allocate around such ref-
erences. We also observe that programming style has a
significant impact on the amount of spuriously retained
storage, typically even if the collector is not terribly
conservative. Some fairly common C and C+4 pro-
gramming styles significantly decrease the effectiveness
of any garbage collector. These observations suffice to
explain some of the different assessments of conservative
collection that have appeared in the literature.
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1 Introduction

Garbage collectors reclaim storage that has been allo-
cated by a client program, but is no longer accessible
by following pointers from program variables. For a re-
cent survey of the problem and of garbage collection
techniques see [24].

Conservative garbage collectors [9] can operate with
only minimal information about the layout of the client
program’s data. Instead of relying on compiler provided
information on the location of pointers, they assume
that any bit pattern that could be a valid pointer in fact
is a valid pointer. Generally, this is safe only under the
assumption that objects do not move. However, hybrids
that rely on some exact pointer information to move
some objects are both possible and often used [3, 13].

It is possible to construct conservative garbage col-
lectors that utilize many of the same performance im-
provement techniques as conventional collectors. Gener-
ational conservative collectors have been constructed[5,
12] as have concurrent collectors that greatly reduce
client pause times[8].

Conservative collectors have been used successfully,
even with fairly large conventional C programs [9, 18,
25].1 Such collectors have also been used as a debugging
tool for programs that explicitly deallocate storage[9,
16].

Conservative garbage collection also makes it possible
to easily compile other programming languages that re-
quire garbage collection into efficient C, thus providing
a portable implementation that can take advantage of
the manufacturers’” C compilers to obtain competitive
performance. Programming language implementations
that rely on conservative collection in this manner in-
clude the only commonly available implementations of
Modula-3 (SRC Modula-3) and Sather[17], as well as
portable implementations of Scheme[4, 18], ML[11, 10],
Common Lisp (AKCL[21]), Mesa [19, 2], and CLU,

1The correctness of such an approach can be guaranteed with
minimal restrictions on C compiler optimizations.[7] In fact, most
current systems use standard C compilers and ignore any possi-
bility of unsafe compiler optimizations.



among others. These vary greatly in their degree of con-
servativism, i.e. in how much information about data
structure layout they maintain. Some maintain com-
plete information on the location of pointers in the heap,
and only scan the stack conservatively[4, 19, 21]. Oth-
ers also treat the heap conservatively [18, 2, 17]. Thus
the following observations apply to different degrees.

Most applications of such collectors have encountered
few peoblems. In particular, the Xerox Portable Com-
mon Runtime system [22] is used routinely to run more
than a million lines of Cedar/Mesa code that have been
compiled to C. Nonetheless, a few negative results have
been reported in the literature. In particular, several
authors[14, 23] have reported significant memory “leak-
age” under some circumstances, i.e. significant amounts
of inaccessible memory were not reclaimed. The nega-
tive performance results of [11] are probably partially
attributable to such leakage. Other papers (cf. [16])
point to the dangers of such leakage, but do not cite
specific empirical results.

We note that garbage collection with minimal leak-
age is fundamentally an optimization problem, and not
an absolute issue of correctness. The notion of a “zero-
leakage” garbage collector is ill-defined. As pointed out
in, for example, [9], programming language definitions
rarely (never?) define a notion of accessible memory. In-
deed, it is hard to see how to do so without disallowing
essential compiler optimizations. Thus the notion of re-
claiming “all inaccessible storage” is ill-defined. Indeed
the traditional interpretation as pointer reachability in
a given implementation is both dependent on the imple-
mentation and not optimal in any real sense. There are
many cases in which pointer accessible structures can be
safely discarded cf. [6, 15]. (This is not an indictment
of automatic garbage collection; C malloc implementa-
tions usually provide no useful bound on space usage,
either. In the worst case they are subject to disastrous
fragmentation overhead.)

Thus the goal of any garbage collector has to be to re-
tain as little memory as it can, subject to the constraint
that all memory that will be accessed in the future must
be retained. Like many compiler optimizations, a fail-
ure by the run-time system to solve this problem well
is likely to lead to unacceptable results. Also like many
compiler optimizations, it is important to give the pro-
grammer a reasonable idea of what programming styles
are likely to result in unacceptable performance.

The remainder of this paper addresses these two is-
sues. First, the next two sections present some empirical
results on the causes of spurious memory retention by
conservative collectors, and discuss refinements for such
collectors that can greatly reduce such retention. Our
approach will be to reduce the probability that non-
pointer data will be mistakenly identified as pointers.
We then conclude with a discussion of programming
techniques that can greatly alter the amount of memory

retained as the result of a misidentification.

The only detailed previously published discussion of
these issues appears to be by Wentworth [23]. He dis-
cusses the circumstances under which spurious retention
is likely to be unacceptable. Some minimal empirical re-
sults also appear in [9]. Some measurements of overall
space usage are given by Zorn [25], but he does not an-
alyze the causes of excess space consumption. He does
not specifically discuss techniques for reducing such re-
tention.

2 Pointer Misidentification

The most apparent potential source of excess memory
retention by conservative collectors is the misidentifica-
tion of, for example, integers, as pointers. If the collec-
tor finds an integer variable that happens to contain the
address of a valid but inaccessible object, and the run-
time system has no way to determine that it is indeed
an integer, then that object, and other garbage objects
referenced by it, will be retained. This can easily hap-
pen while, for example, trying to garbage collect C data
structures. The probability of such misidentification in-
creases if more of the address space is occupied by the
heap, since this increases the probability that a “ran-
dom” piece of data will happen to be the address of an
object.

In some environments, it is essential to recognize a
pointer to the interior of an object as valid, forcing the
containing object to be retained. This is often required
if the source language requires that array elements can
be passed by reference. It potentially allows arbitrary
portable, fully ANSI conforming C programs [1] to be
garbage collected.? This requirement greatly increases
the chance of misidentification.

Some simple ad hoc techniques can often greatly de-
crease the misidentification probability. It is desirable
to design the allocator to avoid allocating objects at ad-
dresses that are likely to collide with other data. On a
machine that ensures that pointers are stored at word
boundaries in memory (where a pointer is a word long),
an adequate solution sometimes consists of properly po-
sitioning the heap in the address space. If the high or-
der bits of addresses are neither all zeros or all ones,
then conflicts with integer data are unlikely. Similarly,
likely character codes and floating point values can be
avoided.

2This also requires some minimal additional constraints on
compiler optimizations.[7] Note that the standard does not de-
fine, and hence renders unportable, the results of many kinds of
commonly used pointer arithmetic (e.g. pointer hashing), many
of which are actually benign for conservative garbage collection.
Interestingly, interior pointers rarely need to be recognized if old C
programs are run with garbage collection; such programs normally
also maintain a pointer to the base of the object, in anticipation
of having to explicitly deallocate it.



If pointers are not guaranteed to be properly aligned
then all possible alignments must be considered by the
collector, thus greatly increasing the number of false
pointers. This situation is particularly unpleasant since
the concatenation of the low order half word of an inte-
ger with the high order half word of the next integer can
easily be a valid heap address (see figure 1), even if small
integers by themselves are not valid heap addresses, as
on most machines. Experience with the collector of [9]
indicates that the impact of this problem can be greatly
reduced if objects are not allocated at addresses con-
taining a large number of trailing zeroes.

0000 0009 0000 000a
| |

Figure 1: Two small integers turn into the “address”

(hex) 00090000

Nonetheless, unaligned pointers are problematic.
With old versions of our collectors, we have sometimes
observed unreasonable garbage retention in environ-
ments requiring both unaligned pointers and pointers
to object interiors to be recognized. Fortunately, mod-
ern machines typically impose substantial penalties on
unaligned data references. Thus newer compilers almost
always guarantee adequate alignment.

For garbage collectors that scan the heap conserva-
tively, it is essential to provide some way to commu-
nicate to the collector at least the fact that an entire
large object contains no pointers. Otherwise certain
kinds of objects (most notably large amounts of com-
pressed data, such as compressed bitmaps) introduce
false pointers with excessively high probability. The col-
lectors discussed in the following sections provide this
alternative. Similarly, it is useful, though sometimes
more difficult, to avoid scanning large static data areas
that contain seemingly random, nonpointer areas (e.g.

10 buffers).

3 Systematic Techniques

A much less ad hoc, and more flexible technique for
avoiding false references is the following. First, we en-
sure that garbage collections take place at regular in-
tervals, with at least one (normally very fast) garbage
collection occurring just after system startup before any
allocation has taken place. For collectors such as that
described in [8] this is quite natural in any case.
Second, we keep a record of invalid pointers discov-
ered during a garbage collection that could conceivably

mark(p)
{
if p is not a valid object address
if p is in the vicinity of the heap
add p to blacklist
return
if p is marked
return
set mark bit for p
for each field ¢ in the object referenced by p
mark(¢)

Figure 2: Marking with blacklisting

become valid object addresses as a result of later alloca-
tion. Such addresses are effectively blacklisted. (Black-
listed values that are no longer found by a later collec-
tion may be removed from the list.) A modification of
a rather naive marking algorithm to accomplish this is
given in figure 2. The only additions required for black-
listing are in bold face. In a realistic implementation,
the heap proximity check is likely to overlap substan-
tially with the immediately preceding pointer validity
check.

Finally we ensure that we do not allocate objects at
blacklisted addresses, unless it is known that very little
memory will ever be reachable from these objects (e.g
because the objects are small and known not to contain
pointers). If pointers to the interiors of objects force
objects to be retained, then we do not allocate objects
that span blacklisted addresses.

This scheme is likely to blacklist addresses that corre-
spond to long-lived data values before these values be-
come false references. Short-lived false references are
not of interest in any case, since they do not cause
garbage to be retained indefinitely. In our experience,
the most troublesome false references (e.g. the one lead-
ing to the problem described in [14]) originate from stat-
ically allocated constant data that is scanned for roots
by the collector. Such false references are guaranteed to
be eliminated.

We have implemented variants of the above approach
in recent versions of the PCR[22] garbage collector and
in more recent versions of the collector described in [9].
Both collectors scan the stack(s), registers, static data,
as well as the heap conservatively.

For reasons of performance and simplicity, we black-
list entire pages rather than individual addresses. The
blacklist can be implemented as a bit array, indexed by
page numbers. If the heap is discontiguous, as for the
second of the above collectors, it makes sense to imple-
ment it as a hash table with one bit per entry. If a false



reference is seen to any of the pages with a given hash
address, all of them are effectively blacklisted. Since
collisions can easily be made rare, this does not result
in much lost precision. In our collectors, the blacklist
is only examined when allocation from a new page is
begun. Since false references during marking are also
relatively rare, the total additional overhead introduced
by blacklisting is usually less than 1%.3

Results have been encouraging. We ran the program
T given in appendix A on a SPARCStation, using both
the statically linked and dynamically linked versions of
the SunOS 4.1.1 C library, on an SGI workstation, and
under OS/2 on an 80486-based PC. We also ran a modi-
fied version of the program on the SPARCstation under
PCR, as part of the Cedar programming environment.
More detailed descriptions of these environments, neces-
sary program adaptations, and explanations of platform
specific anomalies, are given in appendix B.

The program T allocates 200 circular linked lists con-
taining 100 Kbytes each. The collector is configured so
that if any data “points” to any of the 100,000 addresses
corresponding to objects in the list, then the entire list
is retained. We ask what fraction of these linked lists
fail to be collected after the program drops the last in-
tentional reference to any of them. We measured this
value both for a collector that blacklists pages, and for
the same collector with blacklisting disabled. In the
PCR case, some of the experiments were performed with
much more substantial client code running concurrently
with program 7. The results are given in table 1.

Several observations are in order:

1. The executable program is not as trivial as it
sounds, since it includes the garbage collector itself,
as well as large fractions of the C library. (We refer-
ence sprintf and use it to print collector statistics.)
The resulting program and static data areas for the
optimized SPARC(static) versions of the program
total more than 140 Kbytes, out of which more than
60 Kbytes are scanned by the collector as potential
roots. (The time overhead involved in this could
be largely eliminated by the techniques in [8], but
that is not relevant here.) In the PCR case, much
larger data areas are included.

2. Based on the results from PCR, the approximate
amount of retention appears robust across a variety
of client programs. See appendix B for details.

3The stand-alone collector can still allocate and collect an 8
byte object in around 2 microseconds under optimal conditions
(no accessible heap data) on a SPARCStation 2, which is much
faster than malloc/free round-trip times for most malloc imple-
mentations. For the test program of appendix A, version 2.5 of
the collector spends approximately 0.2% of its time dealing with
blacklisting related bookkeeping. In earlier versions of the collec-
tor, this overhead was about an order of magnitude greater, since
blacklisted blocks were kept on a list of free pages indefinitely,
increasing the overhead of page-level allocation.

3. The numbers in the table should be interpreted as
approximate. None of the results are completely
reproducible, since the scanned part of the address
space 1s polluted with UNIX environment vari-
ables, and in some cases apparently register values
left over from kernel calls and/or context switches.
Where we observed different results, we specified
ranges.

4. Large numbers usually do not mean that collected
programs exhibit continuous storage leaks, though
occasionally this might be the case [23]. Usually
false references will render a section of memory un-
usable, and the program will then continue to run
out of a section of memory that has no false refer-
ences to it. Thus some “blacklisting” occurs implic-
itly, after the fact. The problem is that a false ref-
erence may decommission much more than a page
or, in some cases, introduce a growing leak.

5. It is likely that the references that remain even with
blacklisting are not truly permanent, and instead
originated from a portion of the stack where they
would be eventually overwritten in a longer running
program with more varied stack frames. Whenever
we have managed to track down similar references,
this has been the case.

6. The additional heap size needed to make up for
black listed pages in the above environment was
negligible, and not easily measurable, since it is
dominated by the heap expansion increment. In
the PCedar environment, there are enough alloca-
tions of small objects known to be pointer-free that
blacklisted pages can still be allocated, and thus the
loss is usually zero.

7. A quick examination of the blacklist in a stati-
cally linked SPARC executable suggests that if all
interior pointers are considered valid, it becomes
difficult to allocate individual objects larger than
about 100 Kbytes without violating the blacklist
constraint, or requesting memory from the operat-
ing system at a garbage-collector specified location.
This is never a problem if addresses that do not
point to the first page of an object can be consid-
ered invalid. Statically linked code for the SPARC
architecture also probably represents a worst case
among modern architectures. And, as described in
appendix B, the problem could be greatly reduced
with trivial changes to the compiler and libraries.

The main conclusion to be drawn is that blacklist-
ing is often an effective technique for nearly eliminating
accidental retention caused by collector conservativism.
Under most conditions it should be sufficient to allow
conservative collectors that recognize arbitrary interior



| Machine

| Optimized? | No Blacklisting | Blacklisting |

SPARC(static) no 79-79.5% 0-.5%
SPARC(static) yes 78-78.5% 5-1%
SPARC(dynamic) no 8-9.5% 5%
SPARC(dynamic) yes 9-11.5% 0-.5%
SGI(static) no 1.5-8% 0%
SGI(static) yes 1-4% 0%
0OS/2(static) no 28% 3%
0OS/2(static) yes 26% 1%
PCR mixed 44.5-55% 1.5-3.5%

Table 1: Storage retention with and without blacklisting

pointers to objects, with minimal or no changes to com-
pilers and libraries. It can often be incorporated into
a garbage collecting allocator at almost no performance
cost.* And it is, of course, completely invisible to client
programs.

3.1 Other Sources of Excess Retention

A second, more subtle source of excess memory reten-
tion is the fact that conservative collectors tend to have
even less information about variable liveness than con-
ventional collectors. A global variable may contain a
valid pointer which is known to the programmer to no
longer be useful. If the program had been written with
garbage collection in mind, that variable might have
been cleared. If the program was written in C for ex-
plicit deallocation, then this is unlikely. Another form
of this phenomenon occurs on many modern RISC ar-
chitectures. For reasons motivated either by efficient
calling conventions, by the existence of register win-
dows, or by cache alignment considerations, these ar-
chitectures tend to encourage unnecessarily large stack
frames, parts of which are never written. As a conse-
quence, a pointer a may be written to a stack location,
the stack may be popped to well below that pointer’s
location, the stack may grow again, and the garbage
collector may be invoked, with a again appearing live,
since it failed to be overwritten during the second stack
expansion.

We observed this to be a significant effect, especially
for small ‘benchmark’ programs, which often make un-
realistically heavy use of the stack. For example, this
appears to have been a significant factor for the perfor-
mance problems reported in [11].

This part of the problem is not difficult to address in

4More accurate techniques are possible at substantial perfor-
mance cost, even for unmodified C code. For example, under suit-
able conditions, we could run two copies of the same program with
heap starting addresses that differ by n. Any two corresponding
locations whose values do not differ by n are then known not to
be pointers.

the garbage collector. We found two techniques to be
useful:

e Often the initial pointer value that is then acciden-
tally preserved is stored by the allocator or collector
itself. The client program may have a very regular
execution, ensuring that the same stack locations
are always overwritten. But out-of-line allocation
code and garbage collector code is triggered irregu-
larly and relatively rarely. Thus it may pay to have
the allocator and collector carefully clean up after
themselves, clearing local variables before function
exit. (Dead variable elimination in the compiler’s
optimizer may make it difficult to write such code
for the garbage collector.)

e The allocator should occasionally try to clear ar-
eas in the stack beyond the most recently activated
frame. This is particularly useful when the allo-
cator is invoked on a stack that is much shorter
than the largest one encountered so far. A simple
program (compiled unoptimized on a SPARC) that
recursively and nondestructively reverses a 1000 el-
ement list 1000 times resulted in a maximum of
between 40,000 and 100,000 apparently accessible
cons-cells at one point. With a very cheap stack-
clearing algorithm added, we never saw the maxi-
mum exceed 18,000 apparently live cons-cells. (The
optimized version of the program never resulted in
many more than 2000 cons-cells reported as acces-
sible, for either version of this particular program.
The list reversal routine is tail recursive, and was
optimized to a loop, thus eliminating the problem.)

In the Cedar environment, we also observed that stray
stack pointers can significantly lengthen the lifetime of
some objects, thus placing a ceiling on the effectiveness
of generational collection (cf. [20, 8]).



4 Consequences of Misidentifica-
tion

The impact of an individual false reference is greatly
dependent on the data structures involved [23]. The
expected number of vertices retained as a result of a
false reference to a balanced binary tree with child links
is approximately equal to the height of the tree. Thus a
large number of false references to such structures can
usually be tolerated.

As Wentworth also points out[23], other data struc-
tures exhibit much worse behavior. Queues and lazy
lists in particular have the problem that they grow
without bound, but typically only a section of bounded
length is accessible at any point. A false reference can
result in retention of all the inaccessible elements, and
thus unbounded heap growth. Fortunately, at least in
traditional imperative programs, such problems are usu-
ally avoidable.®

In our experience, a more common, but less well rec-
ognized problem is the construction of large strongly
connected data structures. This can result in an un-
bounded memory leak only if the structures are large
enough that the probability of a false reference to a given
structure is essentially one, which is unlikely with the
techniques of the previous section. Nonetheless, sub-
stantial leaks can result as in [14].5

A particularly problematic programming practice is
the use of linked list representations that involve pointer
fields in the objects themselves, instead of separate lisp-
style ‘cons’-cells. If objects appear on more than one
list, this can greatly increase the connectivity of data
structures, in ways that are not actually utilized by the
program.

As an example, consider a rectangular array of ver-
tices, which are linked both horizontally and vertically.
The structure is accessed either by traversing a row, or
by traversing a column, starting from the appropriate
row or column header. An embedded link representation
of the structure is shown in figure 3, and a separate link
representation, with ‘cons’-cells represented by ovals, is
given in figure 4. (The reader should imagine these as
representative of a much larger grid.) In the former case,
a false reference can be expected to result in the reten-
tion of a large fraction of the structure. In the latter
case, at most a single row or column is affected.

When it is possible, the introduction of explicit ‘cons’-

5Queues no longer grow without bound if the queue link field
is cleared when an item is removed. Note that clearing links is
much safer than explicit deallocation, since an error cannot result
in random overwrites of unrelated modules’ data. In this case, it
is also easy to decide when it is safe to clear links based on very
local information.

8Edelson’s data structures exhibited this problem, essentially
as described in figure 3, but with the addition of some cycles. He
was using a version of our collector that predated the addition of
blacklisting.

Figure 3: Rectangular grid with embedded links
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Figure 4: Rectangular grid with separate link cells



cells conveys more information to the garbage collector
than the use of embedded link fields, and should be
encouraged, in the presence of any garbage collector. In
the presence of a nonconservative collector, there are no
false references in our sense. But accidentally uncleared
pointer variables (user or compiler introduced) or an
inopportune promotion by a generational collector can
have similar effects.

Even with explicit deallocation, explicit ‘cons’-cells
potentially allow much more prompt deallocation of
parts of the data structure, and greatly reduce the prob-
ability of introducing cycles. This may more than com-
pensate for the small amount of additional storage re-
quired. Thus this style may be preferable even with ex-
plicit storage management. It is unfortunately at odds
with some common C and C++ programming styles.

5 Conclusions

It is worth emphasizing that at least on machines with
sparse address spaces, the above considerations are im-
portant only on rare occasions. Data structures which
become unbounded with the addition of a stray refer-
ence should be avoided in very long-running applica-
tions, or when this data structure constitutes a signif-
icant fraction of the allocated storage. Circular data
structures are usually an issue only if they are huge
(at least several megabytes), especially if blacklisting
is used by the collector. Even before the addition of
blacklisting, the large majority of observed instances of
memory leakage in the Cedar environment were caused
by programmer errors resulting in genuine unbounded
growth of data structures and not by false references.
And even such errors are much less frequent (and gen-
erally have much more local repairs) than similar errors
in programs that use explicit deallocation.

The addition of blacklisting appears to reduce the
probability of longterm accidental storage retention
through misidentified pointers to very near zero. In
combination with very mildly defensive programming,
garbage-collector induced storage leaks should not be a
problem with conservative collectors.

As measured in [25], simply replacing explicit deallo-
cation in a leak-free program with conservative garbage
collection 1is still likely to increase memory consump-
tion. There are at least two reasons to expect this.
First, programs that are written for explicit dealloca-
tion are likely to keep deallocated memory accessible
through program variables. Hence some explicitly deal-
located memory will appear accessible to any collector.
This phenomenon is clearly avoidable in code written
for automatic garbage collection.

Second, any tracing garbage collector will require
some fraction of the heap to be empty in order to avoid
excessively frequent collections. This appears unavoid-

able without resorting to reference counting.

On the other side, even a completely nonmoving con-
servative collector should gain a slight advantage over a
malloc/free implementation, in that it is usually much
less expensive to keep free lists sorted by address. This
increases the probability that related objects are allo-
cated together, and thus increases the probability of
large chunks of adjacent space becoming available in the
future, decreasing fragmentation. A partially conserva-
tive collector can in addition compact some memory.”
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Appendix A: Program T

/*

* Allocate a cycle of n 4 byte objects.
* Return a pointer into it.

*/

char * alloc._cycle(n)

# define N 200 /* number of lists */
# define S 25000 /* nodes per list */

char * alN];

void test(n)
register int

{

register

for (i =
alil
}
for (i =
alil
}
}

main()

register
/* Force

test(S);

n;
int 1i;

0; i < N; i++) {
= alloc_cycle(n);

0; i < N; i++) {
0;

int 1i;
recognition of interior pointers */

GC_gcollect();

/*

* Simulate further program
* execution to clear stack garbage
* This is not terribly effective.

*/

test(2);
GC_gcollect();

/*

* The statistics reported by
* this collection are used in
* table 1

*/

return(0);

Appendix B: Platforms tested

With the exception of the PCR data, the experiments
were performed with versions 2.3 through 2.5 of our

conservative garbage collector.

The different versions

vary mainly in the platforms they support. Most of
the experiments were performed with multiple collec-
tor versions. All the results were included in the spec-
ified ranges. The most recent version of this collec-
tor is currently available by anonymous ftp from par-
cftp.xerox.com:pub/russell/gc.tar.Z. The collector uses
the techniques of section 3.1 whether or not blacklisting
was enabled.

SPARC A SPARCstation 2 running SunOS4.1.1 us-
ing the bundled C compiler and the bundled C li-
braries. The static version of the of the C library
contains several large arrays (totalling more than
35K) of seemingly random integer values, appar-
ently used for base conversion in the IO library.
Contents of unused registers appear to be nonde-
terministic, since newly allocated register windows
are not cleared. This presumably accounts for the
nonrepeatability of the results.

The large number of false references in the static li-
brary case without blacklisting are primarily due to
the arrays mentioned above. A second major source
of false references is that character strings are not
word-aligned by the compiler we used. A trailing
NUL character of one string, followed by the first
three characters of the next may appear to be a
pointer. (This is easily avoidable on “big-endian”
machines, such as this one. A corresponding prob-
lem with the end of a string is harder to avoid on
“little-endian” machines.)

SGI An SGI 4D/35 running IRIX 4.0.1. Some tests
were repeated under 4.0.5. The machine uses a
MIPS R3000 processor in big-endian mode. The
high variation in retained storage is not entirely
understood, but is presumably also due to varying
register contents after system call or trap returns.

0S/2 An 80486-based PC running OS/2 2.0 with the
IBM C/Set 2 compiler and libraries. Except for op-
timization and debugging switches, all other com-
pilation switches had default settings. program T
was modified to only allocate 100 lists totalling 10
MB, due to memory constraints on the machine
used for the measurement. This probably resulted
in slightly inflated fractions of retained objects,
since certain stack locations are likely to always
contain pointers to garbage objects, independent of
the heap size. Measurements appeared completely
reproducible, though probably not across compiler
versions. This test used a collector similar to ver-
sion 2.5. (Earlier versions didn’t support OS/2 cor-
rectly.)

PCR A different version of program 7 was run inside
the Cedar programming environment on a SPARC-
station 2. The program differed in that each list



consisted of 12500 8-byte cells, instead of twice as
many objects of half the size. (The second word
contained a magic number that was used to help
trace false references into the list.) Furthermore,
statistics were gathered using the PCR finalization
facility, which allows selected otherwise unreach-
able heap cells to be enqueued for further action.
This required a few cells in each list to be allocated
slightly differently.
8-byte cells were considered valid by the collector.
Measurements should be comparable to the above.

All interior pointers into the

The test program was dynamically loaded into the
Cedar world and invoked using the PCR inter-
preter. The test program was run in its own thread.
The garbage collector was manually invoked until
no more lists were finalized as the result of further
invocations. (Once was usually enough.)

The experiments were run with very different sized
Cedar address spaces, ranging from 1.5 to about
13 MB of other live data at the beginning of the
experiment. (In the 1.5 MB case, only the Cedar
command interpreter and some basic packages were
loaded. In the 13 MB case, many other packages,
including a window system, editor, and mailer were
also loaded in the same address space.) Interest-
ingly, the number of loaded packages had minimal
effect on the amount of retained storage, and all
numbers were included in the specified ranges. The
larger address spaces included more background
threads that woke up regularly during the exper-
iment. This seemed to have a beneficial effect of
clearing out thread stacks, and thus tended to re-
duce apparent leakage.

The runs without blacklisting were made in an
otherwise quiet Cedar world. Some of the runs
with blacklisting were made in the same manner,
while others were made with concurrently running
Cedar clients. In one case, the concurrently run-
ning Cedar code accounted for an additional expan-
sion of 13 MB in live data during the test. Again,
this seemed to produce minimal variation, and all
results are included.

We identified three sources of leakage that per-
sisted with blacklisting. All seemed to occur with
comparable frequency, though the second seemed
more common in smaller worlds, and the third was
slightly more noticeable in runs that occurred con-
currently with other allocation clients.

1. Statically allocated variables that changed oc-
casionally, but not frequently. Interestingly, in
several runs the only variables responsible for
such leakage basically contained the heap size,
but were maintained by parts of PCR outside
the collector. These are in a sense guaranteed
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benign; if they pin a large data structure, the
heap will grow, changing the variable values,
unpinning the structure.

2. Garbage left by the allocator itself on other
thread stacks.

3. Occasional heap-resident pointers into the
lists. These probably resulted either from
pages dedicated to 8 byte objects during PCR
startup, before the blacklisting mechanism
had a chance to see the source of the refer-
ences, or as a result of false references created
while the test program was running.

PCR includes only small fractions of the SunOS C
library. Most of the arrays mentioned under the
SPARC description above are excluded. This ex-
plains the improved numbers even without black-
listing. The PCR collector does not attempt to
clear thread stacks, perhaps explaining some in-
crease in remaining stack references.

The PCR version was essentially identical to
PCR4.9. Results should be similar with the most
recent version available by anonymous ftp from
parcftp.xerox.com:pub/pcr (though the Cedar code
is proprietary). The C code, including the test
program itself was compiled unoptimized with the
same compiler as above. The Cedar code was com-
piled with C optimization on the target code en-

abled.



