
Comp 311: Sample Exam II

November 22, 2005

Name:

Id #:

Instructions

1. The examination is closed book. The type checking rules for (Implic-
itly) Polymorphic Jam are given on the first three pages of the exam
as a reference.

2. Fill in the information above and the pledge below.

3. There are 7 problems on the exam worth a total of 110 points.

4. You have four hours to complete the exam. You must take the exam
during a continuous four hour block plus an optional 10 minute break.
Do not discuss the contents of the exam with anyone other than the
instructor and teaching assistants between now and the due date for
the exam.

Pledge:

1

Synopsis of Implicitly Polymorphic Jam

The syntax of (Implicitly) Polymorphic Jam is a restriction of the syntax of
untyped Jam. Every legal Polymorphic Jam program is also a legal untyped
Jam Program. But the converse is false, because there may not be a valid
typing for a given untyped Jam program.

Abstract Syntax

The following grammar describes the abstract syntax of Polymorphic Jam.
Each clause in the grammar corresponds directly to a node in the abstract
syntax tree. The let construction has been limited to a single binding for
the sake of notational simplicity. It is straightforward to generalize the rule
to multiple bindings (with mutual recursion). Note that let is recursive.

M ::= M (M · · ·M) | P (M · · ·M) | if M then M else M |
let x := M in M | V
V ::= map x · · ·x to M | x | n | true | false | null
n ::= 1 | 2 | . . .
P ::= cons | first | rest | null? | cons? | + | - | / | * | = | <
| <= | <- | + | - | ~ | ref | !
x ::= variable names

In the preceding grammar, unary and binary operators are treated ex-
actly like primitive functions.

Monomorphic types in the language are defined by τ , below. Polymor-
phic types are defined by σ. The → corresponds to a function type, whose
inputs are to the left of the arrow and whose output is to the right of the
arrow.

σ ::= ∀α1 · · ·αn. τ
τ ::= int | bool | unit | τ1 × · · · × τn → τ | α | list τ | ref τ
α ::= type variable names

Type Checking Rules

In the following rules, the notation Γ[x1 : τ1, . . . , xn : τn] means the Γ ∪
{x1 : τ1, . . . , xn : τn}.

Γ ` true : bool Γ ` false : bool Γ ` n : int

2

Γ[x1 : τ1, . . . , xn : τn] ` M : τ

Γ ` map x1 . . . xn to M : τ1 × · · · × τn → τ
[abs]

Γ ` M : τ1 × · · · × τn → τ Γ ` M1 : τ1 · · · Γ ` Mn : τn

Γ ` M (M1 · · ·Mn) : τ
[app]

Γ ` M1 : bool Γ ` M2 : τ Γ ` M3 : τ

Γ ` if M1 then M2 else M3 : τ
[if]

Note that there are two rules for let expressions. The [letmono] rule
corresponds to the let rule of Typed Jam; it places no restriction on the form
of the right-hand side M1 of the let binding. The [letpoly] rule generalizes
the free type variables (not occurring in the type environment Γ) in the type
inferred for the right-hand-side of a let binding – provided that the right-
hand-side M1 is a syntactic value: a polymorphic constant like null, a map
expression, or a variable. Syntactic values are expressions whose evaluation
is trivial, excluding evaluations that allocate storage.

Γ[x : τ] ` x : τ
Γ[x : τ ′] ` M1 : τ ′ Γ[x : τ ′] ` M2 : τ

Γ ` let x := M1; in M2 : τ
[letmono]

Γ[x : τ ′] ` V : τ ′ Γ[x : CLOSE(τ ′,Γ)] ` M : τ

Γ ` let x := V ; in M : τ
[letpoly]

Γ[x : ∀α1, . . . , αn. τ] ` x : OPEN(∀α1, . . . , αn. τ, τ1, . . . , τn)

The functions OPEN and CLOSE are the keys to polymorphism. Here
is how CLOSE is defined:

CLOSE(τ,Γ) := ∀{FTV(τ)− FTV(Γ)}. τ

where FTV(α) means the “free type variables in the expression (or type
environment) α”.

When closing over a type, you must find all of the free variables in τ
that are not free in any of the types in the environment Γ. Then, build a
polymorphic type by quantifying τ over all of those type variables.

3

To open a polymorphic type

∀α1, . . . , αn. τ,

substitute the chosen type terms τ1, . . . , τn for the quantified type variables
α1, . . . , αn:

OPEN(∀α1, . . . , αn. τ, τ1, . . . , τn) = τ[α1:=τ1,...,αn:=τn]

which creates a monomorphic type from a polymorphic type. For example,

OPEN(∀α. α → α, τ) = τ → τ

Types of Primitives

The following table gives types for all of the primitive functions and op-
erators and the polymorphic constant null. Programs are type checked
starting with a primitive type environment consisting of this table.

null ∀α. list α
cons ∀α. α× list α → list α
first ∀α. list α → α
rest ∀α. list α → list α
cons? ∀α. list α → bool
null? ∀α. list α → bool

= ∀α. α× α → bool

+ int× int → int
- int× int → int
* int× int → int
/ int× int → int

< int× int → bool
<= int× int → bool

(unary) - int → int
(unary) + int → int
(unary) ˜ bool → bool

<- ∀α. ref α× α → unit
ref ∀α. α → ref α
! ∀α. ref α → α

Typed Jam

The Typed Jam language used in Assignment 5 (absent the explicit type
information embedded in program text) can be formalized as a subset of
Polymorphic Jam. For the purposes of this test, Typed Jam is simply Poly-
morphic Jam less the letpoly inference rule which prevents it from inferring
polymorphic types for program-defined functions.

4

Problem 1. [15 points]

(i) [5 points] Give a simple example of an untyped Jam expression that
is not typable in Polymorphic Jam, yet does not generate a run-time error
when executed. Briefly but convincingly explain why.

(ii) [5 points] Give a simple example of an untyped Jam expression that
is not typable in Typed Jam, but is typable in Polymorphic Jam. Briefly
but convincingly explain why.

(iii) [5 points] Assume that we extend Polymorphic Jam by dropping the
“value restriction” on the right hand side of bindings in letpoly rule. Give
a simple example of a program that is typable in extended Polymorphic
Jam but generates a run-time type error (misinterpreting one type of data
as another) when it is executed.

5

Problem 2. [30 points]

(i) [15 points] Is the following Typed Jam program typable? Justify your
answer either by giving a proof tree (constructed using the inference rules
given at the beginning of the exam) or by showing a conflict in the type
constraints generated by matching the inference rules against the program
text.

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(cons, null, cons(foldr(map x,y to x+y, 0, cons(1,null)), null))

In untyped Jam, the preceding program evaluates to the list (1) .

6

(ii) [15 points] Is the same program

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(cons, null, cons(foldr(map x,y to x+y, 0, cons(1,null)), null))

typable in Polymorphic Jam? Justify your answer in same way as in part
(i).

7

Problem 3. [25 points]
Convert the following untyped Jam program to CPS. Use the identity

function as your top level continuation and do not CPS either nested lets or
applications of primitive operations (primitive functions or operators). Note
that let is recursive.

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(map x,y to x+y, 0, cons(1,null))

Your CPS translation simply has to put all calls on program defined func-
tions in tail position.

8

Problem 4. [10 points]
Convert the program

let foldr := map f,e,l to
if null?(l) then e
else f(first(l), foldr(f, e, rest(l)));

in foldr(map x,y to x+y, 0, cons(1,null))

from the preceding problem (before CPS conversion!) to use static distance
coordinates instead of symbolic variable references. Recall that static dis-
tance coordinates are pairs of natural numbers.

9

Problem 5. [10 points]
Assume that the heap array (of 32-bit machine words) shown below

contains two kinds of records: INT records and CONS records. An INT record
represents a 32 bit integer i; it consists of a tag word containing the value 1
followed by a word containing the 32-bit integer i. A CONS record represents
a pair of data values which are either references to INT records, references
to CONS records, or the null reference. It consists of a tag word containing
the value 2 followed by two words containing references. References to heap
objects are simply their locations (offsets in words from the base) in the
heap. The null reference is represented by the value -1.

Given a root set consisting of location 26, circle the locations of all the
live objects in the heap consisting of the following 34 words of memory.

10

Location Contents
0 2
1 3
2 -1
3 2
4 9
5 6
6 2
7 13
8 3
9 1
10 1
11 1
12 2
13 2
14 9
15 -1
16 1
17 1
18 2
19 6
20 13
21 1
22 25
23 2
24 6
25 0
26 2
27 32
28 18
29 2
30 0
31 23
32 1
33 50

11

Problem 6. [10 points]
The small heap in the preceding problem is full; there is no unallocated

space at the end of the heap array. Using Cheney collection, copy the live
objects from this heap into a new heap and set the variable free to point
to the first free location in the new heap.

Location Contents
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

free =

12

Problem 7. [10 points]
In problem 5, you marked the live nodes in the heap. Assume that you

have recorded this information in a separate bit-map table (only 34 bits long
for this tiny heap). Perform the the “sweep” step for a “mark-and-sweep”
collector that does not move data and links the free blocks in a free-list where
the first word in each free block is the size of the block in words minus 1
and the second word is the address of the next free block. The mininum
size for a block in the free list is two words. Coalesce adjacent free blocks
and use the dummy pointer value -1 to terminate the list. Set the variable
free to point the first node in the free list. You do not have to show the
bit-map table since it simply records the information given in your answer
to problem 5.

Note: if a node is freed and it is isolated (no free node is adjacent), then
the header already contains the correct value for the free-list!

13

Location Old Contents New Contents (if changed)
0 2
1 3
2 -1
3 2
4 9
5 6
6 2
7 13
8 3
9 1
10 1
11 1
12 2
13 2
14 9
15 -1
16 1
17 1
18 2
19 6
20 13
21 1
22 25
23 2
24 6
25 0
26 2
27 32
28 18
29 2
30 0
31 23
32 1
33 50

14

